Background: Cardiologs® has developed the first electrocardiogram (ECG) algorithm that uses a deep neural network (DNN) for full 12‑lead ECG analysis, including rhythm, QRS and ST-T-U waves. We compared the accuracy of the first version of Cardiologs® DNN algorithm to the Mortara/Veritas® conventional algorithm in emergency department (ED) ECGs.
Methods: Individual ECG diagnoses were prospectively mapped to one of 16 pre-specified groups of ECG diagnoses, which were further classified as "major" ECG abnormality or not. Automated interpretations were compared to blinded experts'. The primary outcome was the performance of the algorithms in finding at least one "major" abnormality. The secondary outcome was the proportion of all ECGs for which all groups were identified, with no false negative or false positive groups ("accurate ECG interpretation"). Additionally, we measured sensitivity and positive predictive value (PPV) for any abnormal group.
Results: Cardiologs® vs. Veritas® accuracy for finding a major abnormality was 92.2% vs. 87.2% (p < 0.0001), with comparable sensitivity (88.7% vs. 92.0%, p = 0.086), improved specificity (94.0% vs. 84.7%, p < 0.0001) and improved positive predictive value (PPV 88.2% vs. 75.4%, p < 0.0001). Cardiologs® had accurate ECG interpretation for 72.0% (95% CI: 69.6-74.2) of ECGs vs. 59.8% (57.3-62.3) for Veritas® (P < 0.0001). Sensitivity for any abnormal group for Cardiologs® and Veritas®, respectively, was 69.6% (95CI 66.7-72.3) vs. 68.3% (95CI 65.3-71.1) (NS). Positive Predictive Value was 74.0% (71.1-76.7) for Cardiologs® vs. 56.5% (53.7-59.3) for Veritas® (P < 0.0001).
Conclusion: Cardiologs' DNN was more accurate and specific in identifying ECGs with at least one major abnormal group. It had a significantly higher rate of accurate ECG interpretation, with similar sensitivity and higher PPV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jelectrocard.2018.11.013 | DOI Listing |
PLoS One
January 2025
Engineering Research Center of Hydrogen Energy Equipment& Safety Detection, Universities of Shaanxi Province, Xijing University, Xi'an, China.
The traditional method of corn quality detection relies heavily on the subjective judgment of inspectors and suffers from a high error rate. To address these issues, this study employs the Swin Transformer as an enhanced base model, integrating machine vision and deep learning techniques for corn quality assessment. Initially, images of high-quality, moldy, and broken corn were collected.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
Glaucoma Service, Wills Eye Hospital, Philadelphia, PA, USA.
Purpose: The integration of artificial intelligence (AI), particularly deep learning (DL), with optical coherence tomography (OCT) offers significant opportunities in the diagnosis and management of glaucoma. This article explores the application of various DL models in enhancing OCT capabilities and addresses the challenges associated with their clinical implementation.
Methods: A review of articles utilizing DL models was conducted, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs), autoencoders, and large language models (LLMs).
J Eur Acad Dermatol Venereol
January 2025
Pathology Department, IHP Group, Nantes, France.
Background: There is a need to improve risk stratification of primary cutaneous melanomas to better guide adjuvant therapy. Taking into account that haematoxylin and eosin (HE)-stained tumour tissue contains a huge amount of clinically unexploited morphological informations, we developed a weakly-supervised deep-learning approach, SmartProg-MEL, to predict survival outcomes in stages I to III melanoma patients from HE-stained whole slide image (WSI).
Methods: We designed a deep neural network that extracts morphological features from WSI to predict 5-y overall survival (OS), and assign a survival risk score to each patient.
Neurosurg Rev
January 2025
Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA.
Postoperative facial nerve (FN) dysfunction is associated with a significant impact on the quality of life of patients and can result in psychological stress and disorders such as depression and social isolation. Preoperative prediction of FN outcomes can play a critical role in vestibular schwannomas (VSs) patient care. Several studies have developed machine learning (ML)-based models in predicting FN outcomes following resection of VS.
View Article and Find Full Text PDFAnal Chem
January 2025
The School of Information Sciences and Technology, Northwest University, Xi'an 710127, P.R.China.
Digital fluorescence immunoassay (DFI) based on random dispersion magnetic beads (MBs) is one of the powerful methods for ultrasensitive determination of protein biomarkers. However, in the DFI, improving the limit of detection (LOD) is challenging since the ratio of signal-to-background and the speed of manual counting beads are low. Herein, we developed a deep-learning network (ATTBeadNet) by utilizing a new hybrid attention mechanism within a UNet3+ framework for accurately and fast counting the MBs and proposed a DFI using CdS quantum dots (QDs) with narrow peak and optical stability as reported at first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!