Ferulic acid is a cinnamic derivative of phenolic acid and its pharmacophore (catechol) is responsible for antioxidant, prooxidant and antibacterial activities. In this study, we evaluated the influence of ferulic acid on the antibacterial activity of quinolone-based antibiotics against Acinetobacter baumannii. The minimum inhibitory concentration of ferulic acid against Acinetobacter baumannii AB5075 were considerably lowered for ΔsodB and ΔkatG mutants. Checkerboard assay shows synergistic interactions between ferulic acid and quinolones. In a murine sepsis model, ferulic acid potentiated the antibacterial activities of quinolones. Ferulic acid amplified quinolones-induced redox imbalance by increasing superoxide ion generation, NAD+/NADH ratio and ADP/ATP ratio. Conversely, the level of reduced glutathione was significantly lowered. We conclude that ferulic acid potentiates the antibacterial activity of quinolone-based antibiotics against A. baumannii by increasing ROS generation, energy metabolism and electron transport chain activity with a concomitant decrease in glutathione.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2018.11.033 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
Lignin, the most abundant renewable source of aromatic compounds on earth, remains underexploited in traditional biorefining. Fraxetin, a naturally occurring flavonoid, has garnered considerable attention in the scientific community due to its diverse and potent biological activities such as antimicrobial, anticancer, antioxidant, anti-inflammatory, and neurological protective actions. To enhance the green and value-added utilization of lignin, Saccharomyces cerevisiae was engineered as a cell factory to transform lignin derivatives to produce fraxetin.
View Article and Find Full Text PDFCurr Res Food Sci
January 2025
School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China.
The combination of polyphenols and protein can improve the functional characteristics of protein. How to effectively promote the binding of polyphenols to protein is still a difficult topic. In this study, hydrodynamic cavitation (HC) was used to induce the fabrication of complexes between soy protein isolate (SPI) and different polyphenols (tannic acid (TA), chlorogenic acid (CGA), ferulic acid (FA), caffeic acid (CA), and gallic acid (GA)).
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
Introduction: Fungal endophytes have mutualistic associations with the plant's host, communicating through genetic and metabolic processes. As a result, they gain the ability to generate therapeutically effective metabolites and their derivatives.
Methods: The current study aims to assess antioxidant potential along with the identification of robust metabolites within the crude extract of a potent endophytic fungus Xylaria ellisii isolated from leaf tissues of the Acorus calamus Linn plant.
Int J Biol Macromol
January 2025
Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China. Electronic address:
Pathogen invasion and persistent inflammatory storms caused by bacterial infections are the main challenges to the healing of infected wounds. Herein, this study proposed a pH-responsive polysaccharide hydrogel dressing (CG-HA) composed of cationic guar gum (CG) and hyaluronic acid (HA). Additionally, Zn and ferulic acid (FA)/β-cyclodextrin (β-CD) inclusion complexes (FA/β-CD) were co-introduced into the CG-HA hydrogel to form the desired FA/β-CD@CG-HA-Zn hydrogel.
View Article and Find Full Text PDFMolecules
January 2025
Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan.
L. is native to tropical America and has naturalized in many other tropical, subtropical, and temperate regions in Asia, Africa, Oceania, North and South America, and Europe. infests diverse habitats with a wide range of climatic factors, and its population increases aggressively as one of the world's 100 worst invasive alien species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!