Hexamethyldisiloxane cold plasma treatment and amylose content determine the structural, barrier and mechanical properties of starch-based films.

Int J Biol Macromol

Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Cerro Blanco No. 141, Col. Colinas del Cimatario, C.P. 76090 Santiago de Querétaro, Querétaro, Mexico. Electronic address:

Published: March 2019

In this study, the effect of amylose content and cold plasma treatment on starch films properties was investigated. Films from normal (30%) and high amylose (50 and 70%) starches were subjected to hexamethyldisiloxane (HMDSO) cold plasma treatment. Morphological, structural, mechanical and barrier properties of the films were evaluated. The amount of remnant starch granules (RSG) in the films depended on the amylose content and on the gelatinization extent of the starch. This behavior was corroborated on the films from starch with 50% amylose, where the loss of RSG resulted in poor barrier properties and high hydrophilicity. Moreover, HMDSO cold plasma treatment incorporated methyl groups improving the hydrophobic properties and favored the helix ordering of the starch components resulting in a limited water-film interaction. Furthermore, the simultaneous effect of HMDSO coating and the ordering of the structures reinforced the surface of the films, improving the mechanical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2018.11.211DOI Listing

Publication Analysis

Top Keywords

cold plasma
16
plasma treatment
16
amylose content
12
mechanical properties
8
hmdso cold
8
barrier properties
8
films
7
properties
6
amylose
5
starch
5

Similar Publications

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Under salt stress, plasma membrane proteins regulate ion homeostasis and the balance between reactive oxygen species (ROS). In this study, we investigated the functions of two small membrane proteins-MsRCI2B (tailless) and MsRCI2E (tailed)-encoded by the RCI2 (Rare Cold Inducible 2) gene family in Medicago sativa (alfalfa). We identified the distinct subcellular localization and expression patterns of these proteins under salt stress.

View Article and Find Full Text PDF

Background: Exposure to suboptimal temperatures during pregnancy has been associated with adverse pregnancy and birth outcomes related to placental development disorders. No prior studies have examined the potential impacts of temperature on placental markers. We conducted an investigation into the cumulative impact of daily ambient temperature on critical clinical placental perfusion and function markers during the placentation period, utilizing data from a prospective birth cohort in Nanjing, China.

View Article and Find Full Text PDF

Cold plasma generated by dielectric barrier discharge (DBD) and DBD combined with nebulized liquid microdroplets to generate plasma-activated mist (PAM) have shown the potential as a surface decontamination method for the food industry. The objective of this research was to measure the microbial inactivation caused by DBD and by PAM on tryptic soy agar (TSA) and on glass slides and to determine the efficacy of PAM on selected surfaces having different surface topographies. Tryptic soy agar in Petri dishes and on glass slides (surface roughness Pq = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!