EARLY FLOWERING3 (ELF3) functions as a night-time repressor required for sustaining circadian rhythms and co-ordinating growth and development in various plant species. The rice genome carries two ELF3 homologs, namely OsELF3-1 and OsELF3-2. Previous studies have suggested that OsELF3-1 has a predominant role in controlling rice photoperiodic flowering, while also contributing to the transcriptional regulation of rice floral regulators expressed in the morning. However, OsELF3-1 has not been functionally characterized. Here, we observed that the oself3-1 mutation suppresses the photoperiod-insensitive early flowering of photoperiod sensitivity5 (se5), which is a chromophore-deficient rice mutant. Detailed analyses of the se5oself3-1 double mutant revealed the recovery of the phytochrome-dependent expression of Grain number, plant height, and heading date7 (Ghd7), a floral repressor, and Light-harvesting chlorophyll a/b binding protein (Lhcb) genes. Although the oself3-1 mutation recovered Ghd7 expression in the se5 background, there was a lack of Ghd7 expression in the phyAphyBphyC triple mutant background. These observations suggest that OsELF3-1 represses Ghd7 expression by inhibiting the phytochrome signaling pathway. Comparative genome analyses indicated that OsELF3-1 was produced via gene duplication events in Oryza species, and that it is expressed throughout the day. A comparison between the oself3-1 mutant and transgenic rice lines in which OsELF3-1 and OsELF3-2 are simultaneously silenced uncovered a role for OsELF3-1 in addition to the canonical ELF3 function as an evolutionarily conserved role for a night-time repressor that regulates the rice circadian clock. Our study confirmed that an ELF3 paralog, OsELF3-1, had a unique role involving the suppression of phytochrome signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcy225 | DOI Listing |
Plant Physiol
November 2024
Agronomy College, Liaodong University, Dandong, 118003, China.
The extensive use of nitrogen fertilizer boosts rice (Oryza sativa) production but also harms ecosystems. Therefore, enhancing crop nitrogen use efficiency is crucial. Here, we performed map-based cloning and identified the EARLY FLOWERING3 (ELF3) like protein-encoding gene OsELF3-1, which confers enhanced nitrogen uptake in rice.
View Article and Find Full Text PDFDev Cell
October 2024
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
The ubiquitin-proteasome system (UPS) plays crucial roles in cellular processes including plant growth, development, and stress responses. In this study, we report that a pair of E3 ubiquitin ligases, AvrPiz-t-interaction protein 6 (APIP6) and IPA1-interaction protein 1 (IPI1), intricately target early flowering3 (ELF3) paralogous proteins to control rice immunity and flowering. APIP6 forms homo-oligomers or hetero-oligomers with IPI1.
View Article and Find Full Text PDFDev Cell
October 2024
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. Electronic address:
Theor Appl Genet
June 2024
China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China.
OsCOL5, an ortholog of Arabidopsis COL5, is involved in photoperiodic flowering and enhances rice yield through modulation of Ghd7 and Ehd2 and interactions with OsELF3-1 and OsELF3-2. Heading date, also known as flowering time, plays a crucial role in determining the adaptability and yield potential of rice (Oryza sativa L.).
View Article and Find Full Text PDFJ Adv Res
June 2023
China National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China. Electronic address:
Introduction: Circadian clocks coordinate internal physiology and external environmental factors to regulate cereals flowering, which is critical for reproductive growth and optimal yield determination.
Objectives: In this study, we aimed to confirm the role of OsLUX in flowering time regulation in rice. Further research illustrates how the OsELF4s-OsELF3-1-OsLUX complex directly regulates flowering-related genes to mediate rice heading.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!