Cilia are organelles that serve as cellular antennae. Intraflagellar transport particles containing the IFT-A and IFT-B complexes mediate bidirectional trafficking of ciliary proteins. Particularly, in concert with the BBSome complex, IFT particles play an essential role in trafficking of ciliary G-protein-coupled receptors (GPCRs). Therefore, proteins interacting with the IFT components are potential regulators of ciliary protein trafficking. We here revealed that an uncharacterized protein, C11ORF74, interacts with the IFT-A complex via the IFT122 subunit and is accumulated at the distal tip in the absence of an IFT-A subunit IFT139, suggesting that at least a fraction of C11ORF74 molecules can be transported towards the ciliary tip by associating with the IFT-A complex, although its majority might be out of cilia at steady state. In C11ORF74-knockout (KO) cells, the BBSome components cannot enter cilia. However, trafficking of Smoothened or GPR161, both of which are ciliary GPCRs involved in Hedgehog signalling and undergo BBSome-dependent trafficking, was not affected in the absence of C11ORF74. In addition, C11orf74/B230118H07Rik- KO mice demonstrated no obvious anatomical abnormalities associated with ciliary dysfunctions. Given that C11ORF74 is conserved across vertebrates, but not found in other ciliated organisms, such as nematodes and Chlamydomonas, it might play limited roles involving cilia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jb/mvy100 | DOI Listing |
Nat Rev Mol Cell Biol
November 2024
Human Technopole, Milan, Italy.
J Adv Res
September 2024
Department of Psychiatry, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha 410011, China. Electronic address:
Cell Rep
June 2024
Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029, USA. Electronic address:
Wnt/Wingless (Wg) signaling is critical in development and disease, including cancer. Canonical Wnt signaling is mediated by β-catenin/Armadillo (Arm in Drosophila) transducing signals to the nucleus, with IFT-A/Kinesin 2 complexes promoting nuclear translocation of β-catenin/Arm. Here, we demonstrate that a conserved small N-terminal Arm/β-catenin peptide binds to IFT140, acting as a dominant interference tool to attenuate Wg/Wnt signaling in vivo.
View Article and Find Full Text PDFJ Cell Sci
July 2024
MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
Intraflagellar transport (IFT) is required for ciliary assembly. The IFT machinery comprises the IFT motors kinesin-2 and IFT dynein plus IFT-A and IFT-B complexes, which assemble into IFT trains in cilia. To gain mechanistic understanding of IFT and ciliary assembly, here, we performed an absolute quantification of IFT machinery in Chlamydomonas reinhardtii cilium.
View Article and Find Full Text PDFBiomol NMR Assign
June 2024
RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
The intraflagellar transport (IFT) machinery plays a crucial role in the bidirectional trafficking of components necessary for ciliary signaling, such as the Hedgehog, Wnt/PCR, and cAMP/PKA systems. Defects in some components of the IFT machinery cause dysfunction, leading to a wide range of human diseases and developmental disorders termed ciliopathies, such as nephronophthisis. The IFT machinery comprises three sub-complexes: BBsome, IFT-A, and IFT-B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!