Theobroma cacao, the source of cocoa, is a crop of particular importance in many developing countries. Availability of elite planting material is a limiting factor for increasing productivity of Theobroma cacao; therefore, the development of new strategies for clonal propagation is essential to improve farmers' incomes and to meet increasing global demand for cocoa. To develop a more efficient embryogenesis system for cacao, tissue was transformed with a transgene encoding a fusion of Leafy Cotyledon 2 (TcLEC2) to a glucocorticoid receptor domain (GR) to control nuclear localization of the protein. Upon application of the glucocorticoid dexamethasone (dex), downstream targets of LEC2 involved in seed-development were up-regulated and somatic embryos (SEs) were successfully regenerated from TcLEC2-GR transgenic flower and leaf tissue in large numbers. Immature SEs regenerated from TcLEC2-GR leaves were smaller in size than immature SEs from floral tissue, suggesting a different ontogenetic origin. Additionally, exposure of TcLEC2-GR floral explants to dex increased the number of SEs compared to floral explants from control, non-transgenic trees or from TcLEC2-GR floral explants not treated with dex. Testing different durations of exposure to dex indicated that a three-day treatment produced optimal embryo regeneration. Leaf derived SEs were successfully grown to maturity, converted into plants, and established in the greenhouse, demonstrating that these embryos are fully developmentally competent. In summary, we demonstrate that regulating TcLEC2 activity offers a powerful new strategy for optimizing somatic embryogenesis pipelines for cacao.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261025PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207666PLOS

Publication Analysis

Top Keywords

theobroma cacao
12
floral explants
12
somatic embryogenesis
8
leaf tissue
8
ses regenerated
8
regenerated tclec2-gr
8
immature ses
8
tclec2-gr floral
8
cacao
5
ses
5

Similar Publications

Comparison of cadmium pathways in a high Cd accumulating cultivar versus a low Cd accumulating cultivar of Theobroma cacao L.

Plant Physiol Biochem

January 2025

Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université G. Eiffel, ISTerre, Grenoble, France. Electronic address:

Understanding cadmium (Cd) pathways in cacao trees is critical for developing Cd mitigation strategies. This study investigates whether Cd uptake and translocation mechanisms differ between a low and a high Cd-accumulating cacao cultivar. We sampled three replicate trees of each cultivar, and a grafted cultivar that shared the same scion as the low Cd accumulator but had a different rootstock.

View Article and Find Full Text PDF

Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.

View Article and Find Full Text PDF

Comment on "Stability and degradation mechanism of (-)-epicatechin in thermal processing".

Food Chem

January 2025

Poznań University of Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań, Poland. Electronic address:

Catechins, due to their high antioxidant capacity, are ones of the most common ingredients of human diet (e.g. tea, fruits, cacao) of the well-known health benefit properties.

View Article and Find Full Text PDF

Ecuadorian Cacao Mucilage as a Novel Culture Medium Ingredient: Unveiling Its Potential for Microbial Growth and Biotechnological Applications.

Foods

January 2025

Grupo de Investigación en Bio-Quimioinformática, Carrera de Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito 170503, Ecuador.

Cacao mucilage is typically disposed of during processing, yet its abundant content of organic compounds, polysaccharides, and nutrients renders it valuable for various applications. This scientific study investigates the suitability of cacao mucilage as an alternative culture medium for , , and , aiming to provide a viable alternative to traditional media. Through a mixed-design approach, the powdered mucilage, peptone, and yeast extract ingredients were optimized using the recovery rates of each micro-organism as the response variable.

View Article and Find Full Text PDF

The Health Impact of Cocoa from Cultivation to the Formation of Biogenic Amines: An Updated Review.

Foods

January 2025

Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.

Cocoa and chocolate are known for their health benefits, which depend on factors like cocoa variety, post-harvest practices, and manufacturing processes, including fermentation, drying, roasting, grinding, and refining. These processing methods can influence the concentration and bioavailability of bioactive compounds, such as polyphenols that are linked to cardiovascular health and antioxidant effects. Recent scientific research has led to the development of cocoa-based products marketed as functional foods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!