Motif identification has been one of the most widely studied problems in bioinformatics. Many methods have been developed to discover binding motifs from a large set of genes. But when the given genes are only a partial set of target genes, the statistical significance usually contains a bias towards the input. If we can identify the TF binding motif from a partial set of target genes, we can save the labor costs and resources for doing many experiments. In this paper, we propose a method MISA (Motif Identification through Segments Assembly) to identify binding motifs from a subset of target genes. By ranking and assembling the segments, MISA discovers a set of binding motifs with the best length to fit our proposed objective function. We also predict the additional target genes as an application of regulatory network inference. We compare our approach with two widely used methods MEME and AlignACE by analyzing both the quality of the binding motif and network inference. Using two model organisms S. cerevisiae and E. coli, we show that with 20 percent of the target genes (minimum sample size of 20), we can achieve a motif similarity of 82 percent with the known motifs. Our results also show that 73 percent of target genes on average can be correctly predicted without introducing many false target genes.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2018.2882377DOI Listing

Publication Analysis

Top Keywords

target genes
32
binding motifs
16
partial set
12
set target
12
network inference
12
genes
10
target
8
genes application
8
application regulatory
8
regulatory network
8

Similar Publications

Seed color is a critical quality trait in numerous plant species. In oilseed crops, including rapeseed and mustard, yellow seeds are distinguished by their significantly higher oil content and faster germination rates compared to black or brown counterparts. Despite the agronomic significance of the yellow seeds being a prime breeding target, the mechanisms underlying elevated oil content remain obscure.

View Article and Find Full Text PDF

CBX2 suppresses interferon signaling to diminish tumor immunogenicity via a noncanonical corepressor complex.

Proc Natl Acad Sci U S A

February 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China.

Chromobox 2 (CBX2), a crucial component of the polycomb repressive complex (PRC), has been implicated in the development of various human cancers. However, its role in the regulation of tumor immunogenicity and immune evasion remains inadequately understood. In this study, we found that ablation of CBX2 led to tumor growth inhibition, activation of the tumor immune microenvironment, and enhanced therapeutic efficacy of anti-PD1 or adoptive T cell therapies by using murine syngeneic tumor models.

View Article and Find Full Text PDF

Objective: To investigate the effects and mechanisms of miRNA 221 on myocardial ischemia/reperfusion injury (MIRI) in mice through the regulation of phospholamban (PLB) expression.

Methods: The MIRI mouse model was created and mice were divided into sham, MIRI, MIRI+ 221, and MIRI+ scr groups, with miRNA 221 overexpression induced in the myocardium of MIRI mice by targeted myocardial injection. Quantitative RT-PCR analysis was performed to observe the variation in miRNA 221, PLB, SERCA2, RYR2, NCX1, Cyt C and caspase 3 mRNA levels in myocardium, while Western blot assessed the levels of PLB, p-PLB (Ser16), p-PLB (Thr17), SERCA2, RYR2, NCX1, Cyt C and caspase 3 proteins.

View Article and Find Full Text PDF

Dynamics of tissue repair regulatory T cells and damage in acute Trypanosoma cruzi infection.

PLoS Pathog

January 2025

Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET). Córdoba, Argentina.

Tissue-repair regulatory T cells (trTregs) comprise a specialized cell subset essential for tissue homeostasis and repair. While well-studied in sterile injury models, their role in infection-induced tissue damage and antimicrobial immunity is less understood. We investigated trTreg dynamics during acute Trypanosoma cruzi infection, marked by extensive tissue damage and strong CD8+ immunity.

View Article and Find Full Text PDF

Colon cancer, as a highly prevalent malignant tumor globally, poses a significant threat to human health. In recent years, ferroptosis and cuproptosis, as two novel forms of cell death, have attracted widespread attention for their potential roles in the development and treatment of colon cancer. However, the investigation into the subtypes and their impact on the survival of colon cancer patients remains understudied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!