Singlet oxygen (1 delta gO2) is the lowest energy-excited state of molecular oxygen, and more reactive than the triplet ground-state molecule. Although singlet oxygen has been implicated in a variety of biological effects, including reactions with DNA or some of its components, evidence for mutagenesis by singlet oxygen has remained unclear. We have previously described a system for bacterial exposure to pure exogenous singlet oxygen that eliminates ambiguity regarding the identity of the reactive species responsible for observed results. Despite the potent toxicity of pure singlet oxygen for several different strains of bacteria, we have found no evidence for mutagenicity of singlet oxygen in 26 Salmonella typhimurium histidine-auxotrophic strains killed to 35% survival. These strains included a variety of base-pair substitution or frameshift target sequences for reversion, including targets responsive to oxidative damage and targets rich in GC base pairs. Some strains combined histidine mutations with one or more mutations affecting DNA-repair capacity. 4 strains possessing the hisG46 mutation also were not mutated when exposed to dose ranges killing less than 28% and up to 99% of the bacteria. The relative frequency of small inphase deletions was assayed in hisG428 bacteria exposed to single oxygen and found to be the same as the spontaneous level. In addition to lack of induction of mutation in these strains, the 8-azaguanine forward mutation assay yielded no evidence of mutagenesis by singlet oxygen in strains killed to 15% survival. No induction of genetic changes by singlet oxygen was seen in an assay for duplication of approximately 1/3 of the bacterial chromosome. Tests for the ability of singlet oxygen to induce lambda prophage in E. coli K12 also proved negative. These studies collectively indicate that pure singlet oxygen generated outside the bacterial cell does not react significantly with the bacterial chromosome in ways leading to base-pair substitutions, frameshift mutations, small or large deletions, large duplications, or damage that interferes with DNA replication and induces the SOS system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0027-5107(88)90119-4 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States.
Synergistic photodynamic/photothermal therapy (PDT/PTT) can be used to target cancer cells by locally generating singlet oxygen species or increasing temperature under laser irradiation. This approach offers higher tumor ablation efficiency, lower therapeutic dose requirements, and reduced side effects compared to single treatment approaches. However, the therapeutic efficiency of PDT/PTT is still limited by the low oxygen levels within the solid tumors caused by abnormal vasculature and altered cancer cell metabolism.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
The intricacy, diversity, and heterogeneity of cancers make research focus on developing multimodal synergistic therapy strategies. Herein, an oxygen (O) self-feeding peroxisomal lactate oxidase (LOX)-based LOX-Ce6-Mn (LCM) was synthesized using a biomineralization approach, which was used for cascade chemodynamic therapy (CDT)/photodynamic therapy (PDT) combination therapies through dual depletion of lactate (Lac) and reactive oxygen species (ROS) generation. After endocytosis into tumor cells, the endogenous hydrogen peroxide (HO) can be converted to O by the catalase-like (CAT) activity of LCM, which can facilitate the catalytic reaction of LOX to consume more Lac and alleviate tumor hypoxia to enhance the generation of singlet oxygen (O) upon light irradiation.
View Article and Find Full Text PDFNanoscale
January 2025
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
Photocatalytic detoxification of sulfur mustards (, bis (2-chloroethyl) sulfide, SM) is an effective approach for protecting the ecological environment and human health. In order to fabricate COFs with high performance for the selective transformation of the SM simulant 2-chloroethyl ethyl sulfide (CEES) to nontoxic 2-chloroethyl ethyl sulfoxide (CEESO), three porphyrin-based COFs with different donor groups (R = H, OH, and OMe) were synthesized. Among these COFs, COF-OMe, which possesses the strongest electron-donating ability, demonstrated a faster and higher detoxification rate of CEES at various concentrations, achieving selective oxidation of CEES to non-toxic CEESO with 99.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
Bacterial keratitis (BK) is a type of corneal inflammation resulting from bacterial infection in the eye. Although nanozymes have been explored as promising materials in corneal wound healing, currently available nanozymes lack sufficient catalytic activity and the ability to penetrate bacterial biofilms, limiting their efficacy against the treatment of BK. To remedy this, ZnFe layered double hydroxide (ZnFe-LDH) nanosheets are loaded with Cu single-atom nanozymes (Cu-SAzymes) and aminated dextran (Dex-NH), resulting in the formation of the nanozyme DT-ZnFe-LDH@Cu, which possesses peroxidase (POD)-, oxidase (OXD)-, and catalase (CAT)-like catalytic activities.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
New types of metal-organic framework (MOF) materials have great potential in solving the current global dilemma on energy, environment, and medical care. Herein, based on two kinds of biomolecule-MOFs (Bio-MOFs) with favorable biocompatibility and degradation-reconstruction characteristics, we have established a self-powered muti-functional device to achieve an efficient and broad-spectrum environmental energy collection and biomedical applications. Combining Zn(II) and carnosine-based Zn-Car_MOF possessing a high piezoelectric response (d = 11.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!