The glycoprotein quality control (GQC) system in the endoplasmic reticulum (ER) effectively uses chaperone-type enzymes and lectins such as UDP-glucose:glycoprotein glucosyltransferase (UGGT), calnexin (CNX), calreticulin (CRT), protein disulfide bond isomerases (ERp57 or PDIs), and glucosidases to generate native-folded glycoproteins from nascent glycopolypeptides. However, the individual processes of the GQC system at the molecular level are still unclear. We chemically synthesized a series of several homogeneous glycoproteins bearing M9-high-mannose type oligosaccharides (M9-glycan), such as erythropoietin (EPO), interferon-β (IFN-β), and interleukin 8 (IL8) and their misfolded counterparts, and used these glycoprotein probes to better understand the GQC process. The analyses by high performance liquid chromatography and mass spectrometer clearly showed refolding processes from synthetic misfolded glycoproteins to native form through folding intermediates, allowing for the relationship between the amount of glucosylation and the refolding of the glycoprotein to be estimated. The experiment using these probes demonstrated that GQC system isolated from rat liver acts in a catalytic cycle regulated by the fast crosstalk of glucosylation/deglucosylation in order to accelerate refolding of misfolded glycoproteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.8b08653 | DOI Listing |
J Neurochem
January 2025
Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada.
Highly abundant in neurons, the cellular prion protein (PrP) is an obligatory precursor to the disease-associated misfolded isoform denoted PrP that accumulates in the rare neurodegenerative disorders referred to either as transmissible spongiform encephalopathies (TSEs) or as prion diseases. The ability of PrP to serve as a substrate for this template-mediated conversion process depends on several criteria but importantly includes the presence or absence of certain endoproteolytic events performed at the cell surface or in acidic endolysosomal compartments. The major endoproteolytic events affecting PrP are referred to as α- and β-cleavages, and in this review we outline the sites within PrP at which the cleavages occur, the mechanisms potentially responsible and their relevance to pathology.
View Article and Find Full Text PDFJ Biomed Sci
January 2025
Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, Sector 6, 060031, Bucharest, Romania.
Background: Chronic hepatitis B virus (HBV) infection is a major risk for development of hepatocellular carcinoma (HCC), a frequent malignancy with a poor survival rate. HBV infection results in significant endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) signaling, a contributing factor to carcinogenesis. As part of the UPR, the ER-associated degradation (ERAD) pathway is responsible for removing the burden of misfolded secretory proteins, to re-establish cellular homeostasis.
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Ribosomes use multiple electrical forces to regulate new protein construction, to ensure efficient protein cotranslation, chaperoning, and folding. When these electrical regulatory forces are disrupted as in point charge mutations, specific disease occurs from aberrantly folded proteins. α1 antitrypsin deficiency is perhaps the best-known misfolded protein disease and is covered in some detail.
View Article and Find Full Text PDFCell Rep Med
January 2025
Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA. Electronic address:
Alpha-1 antitrypsin (AAT) deficiency (AATD) is a monogenic disease caused by misfolding of AAT variants resulting in gain-of-toxic aggregation in the liver and loss of monomer activity in the lung leading to chronic obstructive pulmonary disease (COPD). Using high-throughput screening, we discovered a bioactive natural product, phenethyl isothiocyanate (PEITC), highly enriched in cruciferous vegetables, including watercress and broccoli, which improves the level of monomer secretion and neutrophil elastase (NE) inhibitory activity of AAT-Z through the endoplasmic reticulum (ER) redox sensor protein disulfide isomerase (PDI) A4 (PDIA4). The intracellular polymer burden of AAT-Z can be managed by combination treatment of PEITC and an autophagy activator.
View Article and Find Full Text PDFVet Res
January 2025
UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
Misfolding of the cellular PrP (PrP) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrP induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrP-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!