The aggregation behavior of 6-isocassine and N-methyl-6-isocassine, two piperidin-3-ol alkaloids isolated respectively from the barks of Prosopis nigra and P. affinis, was investigated using a combination of NOE experiments and diffusion measurements in solvents of varying polarity and hydrogen bonding capacity. While the NOE enhancements for N-methyl-6-isocassine are positive, regardless of the solvent, those for 6-isocassine shift from negative to positive when going from chloroform-d to methanol-d(4) solution. In addition, despite the self-diffusion coefficients of both compounds being virtually identical in methanol-d4, N-methyl-6-isocassine diffuses nearly twice as fast as the non-methylated alkaloid in chloroform-d. The changes in rotational and translational dynamics observed between solvents for 6-isocassine suggest that the molecule forms dimeric head-to-head aggregates in non-polar aprotic environments, a behavior that could help explain the biological mode of action that has been proposed for this type of alkaloids.

Download full-text PDF

Source

Publication Analysis

Top Keywords

aggregation behavior
8
behavior 6-isocassine
8
6-isocassine n-methyl-6-isocassine
8
biological mode
8
mode action
8
6-isocassine
4
n-methyl-6-isocassine
4
n-methyl-6-isocassine insights
4
insights biological
4
action lipid
4

Similar Publications

Background: Indonesia's vast archipelago and substantial population size present unique challenges in addressing its multifaceted HIV epidemic, with 90% of its 514 districts and cities reporting cases. Identifying key populations (KPs) is essential for effectively targeting interventions and allocating resources to address the changing dynamics of the epidemic.

Objective: We examine the 2022 mapping of Indonesia's KPs to develop improved HIV and AIDS interventions.

View Article and Find Full Text PDF

Ultrasound-Activated Copper Matrix Nanosonosensitizer for Cuproptosis-Based Synergy Therapy.

ACS Appl Bio Mater

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

Cuproptosis exhibits enormous application prospects in treatment. However, cuproptosis-based therapy is impeded by the limited intracellular copper ions, the nonspecific delivery, uncontrollable release, and chelation of endogenous overproduced glutathione (GSH). In this work, an ultrasound-triggered nanosonosensitizer (p-TiO-Cu(I)) was constructed for Cu(I) delivery, on-demand release, GSH consumption, and deeper tissue response.

View Article and Find Full Text PDF

The composition conversion in block copolymer induced by external stimuli such as light and pH is an effective strategy to trigger the disassembly of vesicles experimentally. Based on this strategy, the disassembly behavior of the ABA triblock copolymer vesicle induced by the composition conversion from B block to C block was studied using Monte Carlo simulation. In this study, a part of the B block in the ABA triblock copolymer was converted to the new block C with weaker hydrophobicity, forming the ABCA tetrablock copolymer.

View Article and Find Full Text PDF

The deposition of amyloid-β (Aβ) aggregates and metal ions within senile plaques is a hallmark of Alzheimer's disease (AD). Among the modifications observed in Aβ peptides, -terminal truncation at Phe4, yielding Aβ, is highly prevalent in AD-affected brains and significantly alters Aβ's metal-binding and aggregation profiles. Despite the abundance of Zn(II) in senile plaques, its impact on the aggregation and toxicity of Aβ remains unexplored.

View Article and Find Full Text PDF

High Glucose Treatment Induces Nuclei Aggregation of Microvascular Endothelial Cells via the - Pathway.

Arterioscler Thromb Vasc Biol

January 2025

Research Center of Clinical Medicine, Affiliated Hospital, Nantong University, China. (X.W., D.L.).

Background: Hyperglycemia is a major contributor to endothelial dysfunction and blood vessel damage, leading to severe diabetic microvascular complications. Despite the growing body of research on the underlying mechanisms of endothelial cell (EC) dysfunction, the available drugs based on current knowledge fall short of effectively alleviating these complications. Therefore, our endeavor to explore novel insights into the cellular and molecular mechanisms of endothelial dysfunction is crucial for the field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!