Kinota, Fumiya, Yunden Droma, Nobumitsu Kobayashi, Toshimichi Horiuchi, Yoshiaki Kitaguchi, Masanori Yasuo, Masao Ota, and Masayuki Hanaoka. The contribution of genetic variants of the gene encoding peroxisome proliferator-activated receptor-alpha gene () to high-altitude hypoxia adaptation in Sherpa highlanders. . 24:186-192, 2023.-Sherpa highlanders, who play invaluable roles in the exploration of Mount Everest, have exceptional tolerance to hypobaric hypoxia. Sherpa people are well known to possess the traits determined by genetic background for high-altitude adaptation. The metabolic adaptation mechanism is one of the biological ways for Sherpa highlanders in protecting them from hypoxia stress at high altitude. Studies have suggested that the gene encoding is associated with metabolic adaptation in the Himalayan population of Tibetans. This study attempts to investigate the genetic variants of the in Sherpa highlanders and the association with high-altitude hypoxia adaptation. Seven single-nucleotide polymorphisms (SNPs; rs135547, rs5769178, rs881740, rs4253712, rs5766741, and rs5767700 in introns and rs1800234 in exon 6) in the were genotyped in 105 Sherpa highlanders who lived in the Khumbu region (3440 m above sea level) and 111 non-Sherpa lowlanders who resided in Kathmandu (1300 m) in Nepal. By means of analyses of genetic distances, genotype distributions, allele frequencies, linkage disequilibrium, and haplotype constructions of the seven SNPs in the Sherpa highlanders versus the non-Sherpa lowlanders, it was revealed that the frequencies of minor alleles of rs4253712, rs5766741, rs5767700, and rs1800234 SNPs, as well as the frequency of haplotype constructed by the minor alleles of rs5766741-rs5767700-rs1800234, were significantly overrepresented in the Sherpa highlanders in comparison with the non-Sherpa lowlanders. The results strongly suggest that the genetic variants of the are likely to contribute to the high-altitude adaptation in Sherpa highlanders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516232PMC
http://dx.doi.org/10.1089/ham.2018.0052DOI Listing

Publication Analysis

Top Keywords

sherpa highlanders
32
genetic variants
16
high-altitude hypoxia
12
hypoxia adaptation
12
adaptation sherpa
12
non-sherpa lowlanders
12
sherpa
9
highlanders
9
contribution genetic
8
peroxisome proliferator-activated
8

Similar Publications

With over 14 million people living above 3,500 m, the study of acclimatization and adaptation to high altitude in human populations is of increasing importance, where exposure to high altitude (HA) imposes a blood oxygenation and acid-base challenge. A sustained and augmented hypoxic ventilatory response protects oxygenation through ventilatory acclimatization, but elicits hypocapnia and respiratory alkalosis. A subsequent renally mediated compensatory metabolic acidosis corrects pH toward baseline values, with a high degree of interindividual variability.

View Article and Find Full Text PDF

Archaic introgression contributed to shape the adaptive modulation of angiogenesis and cardiovascular traits in human high-altitude populations from the Himalayas.

Elife

November 2024

Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.

Article Synopsis
  • Previous studies have shown that some human populations mixed with extinct species, influencing their ability to adapt to different environmental challenges through a process known as adaptive introgression.
  • A key example involves a gene that helps Himalayan highlanders resist chronic mountain sickness, which was passed down from Denisovans through this gene flow.
  • This research used advanced genetic analysis methods to identify multiple genes that have contributed to specific adaptations in Tibetan and Sherpa populations, particularly in their capacity to manage low oxygen levels at high altitudes.
View Article and Find Full Text PDF

In lowlanders, high altitude (HA) acclimatization induces hemoconcentration by reducing plasma volume (PV) and increasing total hemoglobin mass (Hb). Conversely, Tibetan highlanders living at HA are reported to have a similar hemoglobin concentration ([Hb]) as lowlanders near sea level, and we investigated whether this reflects alterations in the PV or the Hb response to HA. Baseline assessment of PV and Hb was performed by carbon monoxide rebreathing at low altitudes (∼1,400 m) in Sherpas (an ethnic group of Tibetans living in Nepal) and native lowlanders.

View Article and Find Full Text PDF

Several studies demonstrated that populations living in the Tibetan plateau are genetically and physiologically adapted to high-altitude conditions, showing genomic signatures ascribable to the action of natural selection. However, so far most of them relied solely on inferences drawn from the analysis of coding variants and point mutations. To fill this gap, we focused on the possible role of polymorphic transposable elements in influencing the adaptation of Tibetan and Sherpa highlanders.

View Article and Find Full Text PDF

Genetic Origins and Adaptive Evolution of the Deng People on the Tibetan Plateau.

Mol Biol Evol

October 2023

State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.

Article Synopsis
  • The study explores the genetic diversity of the Deng people from the Tibetan Plateau, sequencing 54 whole genomes and comparing them with Tibetans and Sherpas, as well as ancient Asian genomes.
  • The research found that the Deng people have fewer genetic variants and a smaller population size, with their ancestry closely linked to ancient northern East Asians, and a more recent divergence from Tibetans.
  • Adaptive genetic variants identified in the Deng only partially overlap with those in Tibetans, indicating different adaptive strategies and suggesting convergent adaptation may be common on the Tibetan Plateau.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!