A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computationally-inspired discovery of an unsymmetrical porous organic cage. | LitMetric

AI Article Synopsis

  • A porous organic cage was created using a specific building block identified through computational methods, involving a complex chemical reaction.
  • This cage is rigid, microporous, and features 36 potential structural isomers due to the uneven symmetry of its building blocks, but only one distinct isomer with unique characteristics was observed experimentally.
  • Advanced computational analysis was utilized to assess these possible isomers, paving the way for better control over properties like crystallinity and porosity in future materials designed from unsymmetrical structures.

Article Abstract

A completely unsymmetrical porous organic cage was synthesised from a C symmetrical building block that was identified by a computational screen. The cage was formed through a 12-fold imine condensation of a tritopic C symmetric trialdehyde with a ditopic C symmetric diamine in a [4 + 6] reaction. The cage was rigid and microporous, as predicted by the simulations, with an apparent Brunauer-Emmett-Teller surface area of 578 m g. The reduced symmetry of the tritopic building block relative to its topicity meant there were 36 possible structural isomers of the cage. Experimental characterisation suggests a single isomer with 12 unique imine environments, but techniques such as NMR could not conclusively identify the isomer. Computational structural and electronic analysis of the possible isomers was used to identify the most likely candidates, and hence to construct a 3-dimensional model of the amorphous solid. The rational design of unsymmetrical cages using building blocks with reduced symmetry offers new possibilities in controlling the degree of crystallinity, porosity, and solubility, of self-assembled materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr06868bDOI Listing

Publication Analysis

Top Keywords

unsymmetrical porous
8
porous organic
8
organic cage
8
building block
8
reduced symmetry
8
cage
5
computationally-inspired discovery
4
discovery unsymmetrical
4
cage completely
4
completely unsymmetrical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: