As a robust radioanalytical method for tracking carbonaceous particulates in vivo, polycyclic aromatic hydrocarbons from diesel exhaust were labeled with a radioactive-iodine-tagged pyrene analogue. Single-photon emission computed tomography and biodistribution studies showed high uptake and slow clearance of this matter in the respiratory system, which may underlie its severe toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cc08304e | DOI Listing |
J Phys Chem Lett
January 2025
Department of Chemistry, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States.
What if an experiment could combine the power of cycloaddition and cross-coupling with the formation of an aromatic molecule in a single collision? Crossed molecular beam experiments augmented with electronic structure and statistical calculations provided compelling evidence on a novel radical route involving 1,3-butadiynyl (HCCCC; X∑) radicals synthesizing (substituted) arylacetylenes in the gas phase upon reactions with 1,3-butadiene (CHCHCHCH; XA) and 2-methyl-1,3-butadiene (isoprene; CHC(CH)CHCH; XA'). This elegant mechanism merges two previously disconnected concepts of cross-coupling and cycloaddition-aromatization in a single collision event via the formation of two new C(sp)-C(sp) bonds and bending the 180° moiety of the linear 1,3-butadiynyl radical out of the ordinary by 60° to 120°. In addition to its importance to fundamental organic chemistry, this unconventional mechanism links two previously separated routes of gas-phase molecular mass growth processes of polyacetylenes and polycyclic aromatic hydrocarbons (PAHs), respectively, in low-temperature environments such as in cold molecular clouds like the Taurus Molecular Cloud (TMC-1) and in hydrocarbon-rich atmospheres of planets and their moons such as Titan, which revises the established understanding of low-temperature molecular mass growth processes in the Universe.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Civil and Environmental Engineering, Babol Noshirvani University of Technology, Babol, Iran.
Water contamination by polycyclic aromatic hydrocarbons (PAHs), particularly naphthalene, is a serious environmental concern due to its persistence, bioaccumulation, and toxicity. This study explores the adsorption behavior of naphthalene using organobentonite (OBt), synthesized by intercalating cetyltrimethylammonium bromide (CTAB) into sodium bentonite (SBt) with varying cation exchange capacities (CECs). The effectiveness of OBt in naphthalene adsorption was evaluated by analyzing key parameters, including CEC, contaminant concentration, and contact time.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
Pyrene, a representative polycyclic aromatic hydrocarbon, frequently occurs in aquatic environments and is associated with lethal impacts on humans and wildlife. This study examined the impact of pyrene on , a dinoflagellate responsible for harmful algal blooms, and their capability to bioremove pyrene. In a 96 h exposure experiment, effectively reduced the pyrene concentration in seawater to 50, 100, and 200 μg/L, with a combined removal efficiency of 96% in seawater.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
South China University of Technology School of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, 381 Wushan Road, 510640, Guangzhou, CHINA.
Chalcogen-containing carbonyls, specifically thioxanthone (TX), hold great potential in organic light-emitting diodes (OLEDs). While the development of narrowband OLEDs with chalcogen-containing carbonyls remains challenging due to difficulties in achieving both high device efficiency and narrow emission spectra. Herein, via a strategic incorporation of the TX moiety, two orange-red narrowband emitters, 2TXBN and BNTXBN, are designed and synthesized for the first time.
View Article and Find Full Text PDFSci Total Environ
January 2025
Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone and Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangzhou 510045, China.
This study integrated data-driven interpretable machine learning (ML) with statistical methods, complemented by knowledge-driven discrimination diagrams, to identify the primary driving factors of heavy metal (HM) and polycyclic aromatic hydrocarbon (PAH) contamination in agricultural soils influenced by complex sources in a rapidly industrializing region of a megacity in southern China. First, the statistical characteristics of the concentrations of HMs and PAHs, and their correlations with the environmental covariates were explored. Three ML models and a statistical model comprising multiple environmental variable predictors were developed and assessed to predict the concentration of HMs in the agricultural soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!