Secondhand smoke remains a global concern for children's health. Epidemiological studies implicate exposure to secondhand smoke as a major risk factor for behavioral disorders, yet biological causation remains unclear. Model studies have mainly focused on secondhand smoke impacts to prenatal neurodevelopment, yet juvenile exposure represents a separate risk. Using ion mobility-enhanced data-independent mass spectrometry, the effect of juvenile secondhand smoke exposure on the prefrontal cortex, a principal part of the brain involved in behavioral control, is characterized. The produced dataset includes 800 significantly responsive proteins within the juvenile orbital frontal cortex, with 716 showing an increase in abundance. The neuroproteomic response reflects a prominent perturbation within the glutamatergic synaptic system, suggesting aberrant, disorganized excitation as observed underlying psychiatric disorders. Also disclosed are impacts to GABAergic and dopaminergic systems. Overall, the dataset provides a wealth of detail, facilitating further targeted research into the causal mechanisms underlying behavioral disorders associated with juvenile exposure to secondhand smoke and other environmental pollutants. All MS data have been deposited to the ProteomeXchange consortium with identifier PXD011744.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484431 | PMC |
http://dx.doi.org/10.1002/pmic.201800268 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!