Plant growth is a self-organized process incorporating distributed sensing, internal communication and morphology dynamics. We develop a distributed mechatronic system that autonomously interacts with natural climbing plants, steering their behaviours to grow user-defined shapes and patterns. Investigating this bio-hybrid system paves the way towards the development of living adaptive structures and grown building components. In this new application domain, challenges include sensing, actuation and the combination of engineering methods and natural plants in the experimental set-up. By triggering behavioural responses in the plants through light spectra stimuli, we use static mechatronic nodes to grow climbing plants in a user-defined pattern at a two-dimensional plane. The experiments show successful growth over periods up to eight weeks. Results of the stimuli-guided experiments are substantially different from the control experiments. Key limitations are the number of repetitions performed and the scale of the systems tested. Recommended future research would investigate the use of similar bio-hybrids to connect construction elements and grow shapes of larger size.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6227980PMC
http://dx.doi.org/10.1098/rsos.180296DOI Listing

Publication Analysis

Top Keywords

climbing plants
12
natural climbing
8
plants
5
autonomously shaping
4
shaping natural
4
plants bio-hybrid
4
bio-hybrid approach
4
approach plant
4
plant growth
4
growth self-organized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!