To develop a brackish water flea as a promising model for marine monitoring, were exposed to two pollutants, cadmium (Cd) and benzo[]pyrene (BaP), which have different chemical characteristics and distinct modes of metabolic action on aquatic animals. Twenty-four hours after exposure to Cd (2 mg/L) or BaP (25 μg/L), whole body transcriptomes were analyzed. In total, 99.6 Mbp were assembled from nine libraries, resulting in 98,458 transcripts with an N50 of 1883 bp and an average contig length of 968 bp. Functional gene annotations were performed using Gene Ontology, Eukaryotic Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Cd significantly modulated endocrine and digestive enzyme system. Following BaP treatment, DNA repair and circadian rhythm related metabolisms were significantly modulated. Both the chemicals induced stress response and detoxification metabolism. This brackish water flea genomic information will be useful to monitor estuaries and coastal regions, as water fleas have been confirmed as promising sentinel models in freshwater ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240204PMC
http://dx.doi.org/10.1186/s41065-018-0075-3DOI Listing

Publication Analysis

Top Keywords

brackish water
12
water flea
12
cadmium benzo[]pyrene
8
novo transcriptome
4
transcriptome assembly
4
assembly brackish
4
water
4
flea based
4
based short-term
4
short-term cadmium
4

Similar Publications

Marine polysaccharide hydrogels have emerged as an innovative platform for regulating the in vivo release of natural bioactive compounds for medical purposes. These hydrogels, which have exceptional biocompatibility, biodegradability, and high water absorption capacity, create effective matrices for encapsulating different bioactive molecules. In addition, by modifying the physical and chemical properties of marine hydrogels, including cross-linking density, swelling behavior, and response to external stimuli like pH, temperature, or ionic strength, the release profile of encapsulated bioactive compounds is strictly regulated, thus maximizing therapeutic efficacy and minimizing side effects.

View Article and Find Full Text PDF

Biofilm Formation, Modulation, and Transcriptomic Regulation Under Stress Conditions in sp.

Int J Mol Sci

January 2025

Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.

In nature, bacteria often form heterogeneous communities enclosed in a complex matrix known as biofilms. This extracellular matrix, produced by the microorganisms themselves, serves as the first barrier between the cells and the environment. It is composed mainly of water, extracellular polymeric substances (EPS), lipids, proteins, and DNA.

View Article and Find Full Text PDF

() is a Gram-negative, halophilic bacillus known for causing severe infections such as gastroenteritis, necrotizing fasciitis, and septic shock, with mortality rates exceeding 50% in high-risk individuals. Transmission occurs primarily through the consumption of contaminated seafood, exposure of open wounds to infected water, or, in rare cases, insect bites. The bacterium thrives in warm, brackish waters with high salinity levels, and its prevalence is rising due to the effects of climate change, including warming ocean temperatures and expanding coastal habitats.

View Article and Find Full Text PDF

Would the Oceans Become Toxic to Humanity Due to Use and Mismanagement of Plastics?

Int J Environ Res Public Health

December 2024

School of Applied Engineering and Technology, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA.

The production of plastics and associated products, including microplastics (MPs), has been surging over the past several decades and now poses a grave environmental threat. This is because when not appropriately recycled, incinerated, or disposed of in fully contained landfills, plastic waste manifests as a potent pollutant, with vast amounts finding their way into oceans annually, adversely impacting marine life and ecosystems. Additionally, research also confirms there are direct impacts from MPs on water, air, and soil, impacting ecosystem and human health.

View Article and Find Full Text PDF

Genomic analysis of Pseudoalteromonas sp. M58 reveals its role in chitin biodegradation.

Mar Genomics

March 2025

Shandong Jide Highway Co., Ltd, Dezhou, China. Electronic address:

Chitin, the most abundant polysaccharide in the ocean, is a kind of high molecular weight organic matter formed by N-acetyl-D-glucosamine (GlcNAc) via β-1,4-glucoside linkage. Degradation and recycling of chitin driven by marine bacteria are crucial for biogeochemical cycles of carbon and nitrogen in the ocean. Pseudoalteromonas sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!