AI Article Synopsis

  • Researchers studied the brain activity of larval zebrafish while exposing them to various visual stimuli, using a method that captures neuron activity across the whole brain and not just specific areas.
  • They found neurons that respond differently to different stimuli and identified groups of neurons in the anterior hindbrain that are linked to similar behaviors, although these groups aren’t directly responsible for motor actions.
  • By developing a new technique to cluster neuron activity, the study provides insights into the overall functional organization of the zebrafish brain, revealing that multiple brain nuclei work together in a coordinated manner.

Article Abstract

Simultaneous recordings of large populations of neurons in behaving animals allow detailed observation of high-dimensional, complex brain activity. However, experimental approaches often focus on singular behavioral paradigms or brain areas. Here, we recorded whole-brain neuronal activity of larval zebrafish presented with a battery of visual stimuli while recording fictive motor output. We identified neurons tuned to each stimulus type and motor output and discovered groups of neurons in the anterior hindbrain that respond to different stimuli eliciting similar behavioral responses. These convergent sensorimotor representations were only weakly correlated to instantaneous motor activity, suggesting that they critically inform, but do not directly generate, behavioral choices. To catalog brain-wide activity beyond explicit sensorimotor processing, we developed an unsupervised clustering technique that organizes neurons into functional groups. These analyses enabled a broad overview of the functional organization of the brain and revealed numerous brain nuclei whose neurons exhibit concerted activity patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543271PMC
http://dx.doi.org/10.1016/j.neuron.2018.09.042DOI Listing

Publication Analysis

Top Keywords

neuronal activity
8
convergent sensorimotor
8
larval zebrafish
8
motor output
8
activity
6
neurons
5
brain-wide organization
4
organization neuronal
4
activity convergent
4
sensorimotor transformations
4

Similar Publications

The time course and organization of hippocampal replay.

Science

January 2025

Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.

The mechanisms by which the brain replays neural activity sequences remain unknown. Recording from large ensembles of hippocampal place cells in freely behaving rats, we observed that replay content is strictly organized over multiple timescales and governed by self-avoidance. After movement cessation, replays avoided the animal's previous path for 3 seconds.

View Article and Find Full Text PDF

Social animals live in groups and interact volitionally in complex ways. However, little is known about neural responses under such natural conditions. Here, we investigated hippocampal CA1 neurons in a mixed-sex group of five to 10 freely behaving wild Egyptian fruit bats that lived continuously in a laboratory-based cave and formed a stable social network.

View Article and Find Full Text PDF

Itch is a dominant symptom in dermatitis, and scratching promotes cutaneous inflammation, thereby worsening disease. However, the mechanisms through which scratching exacerbates inflammation and whether scratching provides benefit to the host are largely unknown. We found that scratching was required for skin inflammation in mouse models dependent on FcεRI-mediated mast cell activation.

View Article and Find Full Text PDF
Article Synopsis
  • Synchronization in brain networks is crucial for processing information, but time delays in signal transmission can significantly influence this process, especially in more complex spiking neural networks.
  • The study involves investigating synchronization conditions and dynamics in a two-dimensional network of adaptive exponential integrate-and-fire neurons, focusing on how delay impacts this behavior.
  • Findings reveal that synchronization patterns depend on a combination of properties at different levels, including individual neuron characteristics, network connectivity, and long-range connections, which together affect the emergent activity patterns in the brain.
View Article and Find Full Text PDF

Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!