A Prediction Tool to Facilitate Risk-Stratified Screening for Squamous Cell Skin Cancer.

J Invest Dermatol

Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California, USA. Electronic address:

Published: December 2018

Cutaneous squamous cell cancers (cSCCs) present an under-recognized health issue among non-Hispanic whites, one that is likely to increase as populations age. cSCC risks vary considerably among non-Hispanic whites, and this heterogeneity indicates the need for risk-stratified screening strategies that are guided by patients' personal characteristics and clinical histories. Here we describe cSCCscore, a prediction tool that uses patients' covariates and clinical histories to assign them personal probabilities of developing cSCCs within 3 years after risk assessment. cSCCscore uses a statistical model for the occurrence and timing of a patient's cSCCs, whose parameters we estimated using cohort data from 66,995 patients in the Kaiser Permanente Northern California healthcare system. We found that patients' covariates and histories explained approximately 75% of their interpersonal cSCC risk variation. Using cross-validated performance measures, we also found cSCCscore's predictions to be moderately well calibrated to the patients' observed cSCC incidence. Moreover, cSCCscore discriminated well between patients who subsequently did and did not develop a new primary cSCC within 3 years after risk assignment, with area under the receiver operating characteristic curve of approximately 85%. Thus, cSCCscore can facilitate more informed management of non-Hispanic white patients at cSCC risk. cSCCscore's predictions are available at https://researchapps.github.io/cSCCscore/.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jid.2018.03.1528DOI Listing

Publication Analysis

Top Keywords

prediction tool
8
risk-stratified screening
8
non-hispanic whites
8
clinical histories
8
patients' covariates
8
years risk
8
cscc risk
8
csccscore's predictions
8
cscc
5
tool facilitate
4

Similar Publications

Background: To develop and validate a clinical-radiomics model for preoperative prediction of lymphovascular invasion (LVI) in rectal cancer.

Methods: This retrospective study included data from 239 patients with pathologically confirmed rectal adenocarcinoma from two centers, all of whom underwent MRI examinations. Cases from the first center (n = 189) were randomly divided into a training set and an internal validation set at a 7:3 ratio, while cases from the second center (n = 50) constituted the external validation set.

View Article and Find Full Text PDF

Developing a decision support tool to predict delayed discharge from hospitals using machine learning.

BMC Health Serv Res

January 2025

Department of Industrial Engineering, Dalhousie University, PO Box 15000, Halifax, B3H 4R2, NS, Canada.

Background: The growing demand for healthcare services challenges patient flow management in health systems. Alternative Level of Care (ALC) patients who no longer need acute care yet face discharge barriers contribute to prolonged stays and hospital overcrowding. Predicting these patients at admission allows for better resource planning, reducing bottlenecks, and improving flow.

View Article and Find Full Text PDF

Purpose: The study aimed to develop a deep learning model for rapid, automated measurement of full-spine X-rays in adolescents with Adolescent Idiopathic Scoliosis (AIS). A significant challenge in this field is the time-consuming nature of manual measurements and the inter-individual variability in these measurements. To address these challenges, we utilized RTMpose deep learning technology to automate the process.

View Article and Find Full Text PDF

Predicting the coefficient of volume compressibility (m) would help a field engineer to make a quick estimate of the soil compressibility. The multiple correlations suggested by various researchers as available in the literature indicate the importance of predicting the m of soil. The existing correlations as available in literature either use soil state (in the form of SPT N-value or unconfined compressive strength or natural water content) or soil type (in the form of plasticity properties).

View Article and Find Full Text PDF

The purpose of this article is to infer patient level outcomes from population level randomized control trials (RCTs). In this pursuit, we utilize the recently proposed synthetic nearest neighbors (SNN) estimator. At its core, SNN leverages information across patients to impute missing data associated with each patient of interest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!