Controlling the size of nanoscale entities is important because many properties of nanomaterials are directly related to the size of the particles. Gold nanoparticles represent classic materials and are of particular interest due to their potential application in a variety of fields. In this study, hexanethiol-capped gold nanoparticles are synthesized via the Brust-Schiffrin method. Synthesized nanoparticles were characterized by various analytical techniques such as transmission electron microscopy, scanning tunneling microscopy (STM), UV-visible absorption spectroscopy and electrochemical techniques. We have varied the molar ratio of gold to the protecting agent (hexanethiol) to discover the effect of gold-to-hexanethiol ligand ratio on the size of gold particles. The clear correlation between particle size and molar ratio is found that the averaged particle size decreases from 4.28 ± 0.83 to 1.54 ± 0.67 nm as the gold-to-ligand molar ratio changes from 1:1 to 1:9. In contrast to a recent report that thiolated gold nanoparticles are under spontaneous disintegration when they are assembled on a gold substrate, our STM experiments proved that these gold nanoparticles can form a stable monolayer or multiple layers on the platinum electrode without observing disintegration within 72 h. Therefore, our STM experiments demonstrate that the disintegration behavior of gold nanoparticles is related to the type of ligands and the nature of substrate materials. In electrochemical experiments, these gold nanoparticles displayed an electrochemical quantized charging effect, making these nanoparticles useful in the device applications such as electrochemical or biological sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.8b02623 | DOI Listing |
Nanoscale
January 2025
Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India.
Chemotherapy is a crucial cancer treatment, but its effectiveness requires precise monitoring of drug concentrations in patients. This study introduces an innovative electrochemical strip sensor design to detect and continuously monitor methotrexate (MTX), a key chemotherapeutic drug. The sensor is crafted through an eco-friendly synthesis process that produces porous reduced graphene oxide (PrGO), which is then integrated with gold nanocomposites and polypyrrole (PPy) to boost the performance of a screen-printed carbon electrode (SPCE).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey.
The combination of plasmonic metals and MXene, as a new and interesting member of the 2D material class, may provide unique advantages in terms of low cost, versatility, flexibility, and improved activity as an ideal surface-enhanced Raman spectroscopy (SERS) platform. Despite the recent progress, the present studies on the utilization of plasmonic metal/MXene-based SERS systems are quite limited and thereby benefits of the extraordinary properties of this combination cannot be realized. In this study, for the first time, we propose layer-by-layer (LbL) thin films of TiC MXene and gold nanoparticles (AuNPs) as a robust SERS platform (TiC/AuNPs).
View Article and Find Full Text PDFSoft Matter
January 2025
Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive analytical technique with excellent molecular specificity. However, separate pristine nanoparticles produce relatively weak Raman signals. It is necessary to focus on increasing the "hot-spot" density generated at the nanogaps between the adjacent nanoparticles (second-generation SERS hotspot), thus significantly boosting the Raman signal by creating an electromagnetic field.
View Article and Find Full Text PDFCurr Drug Deliv
January 2025
School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
Introduction: Assessing the cytotoxicity of gold nanoparticles (GNPs) has gained importance due to their development in the biomedical field.
Method: In this study, we systematically synthesized gold nanorods (GNRs), gold nanobipyramids (GNBPs), and gold nanocups (GNCs) using a seed-mediated method, with an average length of 32.53 ± 4.
Mikrochim Acta
January 2025
School of Public Health, Jilin University, Changchun, Jilin, 130021, P. R. China.
A spherical nucleic acid (SNA, AuNPs-aptamer) into CRISPR/Cas12a system combined with poly T-template copper nanoparticles as fluorescence reporter was fabricated to establish an amplification-free sensitive method for Staphylococcus aureus (S. aureus) detection. This method, named PTCas12a, utilizes the concept that the bifunction of SNA recognizes the S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!