Mechanisms underlying nickel nanoparticle induced reproductive toxicity and chemo-protective effects of vitamin C in male rats.

Chemosphere

Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China. Electronic address:

Published: March 2019

The purpose of this research is to go a step further study on the reproductive toxicities and the underlying mechanisms induced by nickel nanoparticles (NiNPs), and the possible protective action of vitamin C. Animal experiment was designed according to the one-generation reproductive toxicity standard, and rats were exposed to NiNPs through gavage. Ultrastructural, reactive oxygen species (ROS), oxidant and antioxidant enzymes, and cell apoptosis-related factors in the testicular tissue were analyzed. In contrast with the control group, the activity of surperoxide dismutase (SOD), catalase (CAT) and gonad-stimulating hormone (GSH) was reduced, while the content of nitric oxide (NO), malondialdehyde (MDA) and ROS was increased in the NiNPs treated animals. As the doses of NiNPs increase, the mRNA of apoptotic related factor Caspase-9, Caspase-8 and Caspase-3 showed an obviously upregulation. Protein expression of Bcl-2-associated X Protein (Bax) and apoptosis inducing factor (AIF) was significantly unregulated. After addition of antioxidants-vitamin C, the toxicity was reduced. Injured testicular tissue indicated that NiNPs exposure could damage the reproductive system. Our results suggest that NiNPs induce significant reproductive toxicities. The cellular apoptosis might be induced by caspase family proteinases, but the regulator factor (factor associated suicide (Fas), B-cell lymphoma-2 (Bcl-2), Bax, BH3-interacting domain death agonist (Bid) and AIF protein) might not be involved in this process. Thus, the mechanism of reproductive toxicity of NiNPs on rat testes involves in the induction of oxidative stress, which further results in cell apoptosis. Antioxidants-vitamin C shows a significant inhibition on the reproductive toxicities induced by NiNPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.11.128DOI Listing

Publication Analysis

Top Keywords

reproductive toxicity
12
reproductive toxicities
12
ninps
8
testicular tissue
8
reproductive
7
mechanisms underlying
4
underlying nickel
4
nickel nanoparticle
4
induced
4
nanoparticle induced
4

Similar Publications

Background: Tramadol, an opioid analgesic, is known to induce testicular damage and impair reproductive parameters. Vitamin D3, recognized for its antioxidant and protective properties, might offer a potential protective effect against tramadol-induced testicular damage. This study observed the effects of co-administration of vitamin D3 and tramadol on serum kisspeptin levels, testicular histology, semen parameters, testosterone levels, and oxidative stress markers in male rats.

View Article and Find Full Text PDF

The cellular concentrations of splicing factors (SFs) are critical for controlling alternative splicing. Most serine and arginine-enriched (SR) protein SFs regulate their own concentration via a homeostatic feedback mechanism that involves regulation of inclusion of non-coding 'poison exons' (PEs) that target transcripts for nonsense-mediated decay. The importance of SR protein PE splicing during animal development is largely unknown despite PE ultra-conservation across animal genomes.

View Article and Find Full Text PDF

Polyphenol-Mediated Assembly of Toll-like Receptor 7/8 Agonist Nanoparticles for Effective Tumor Immunotherapy.

Acta Biomater

December 2024

The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China. Electronic address:

Toll-like receptor (TLR) 7/8 agonists have shown significant potential in tumor immunotherapy. However, the limited pharmacokinetic properties and systemic toxicity resulting from off-target effects limits their biomedical applications. We here report the polyphenol-mediated assembly of resiquimod (R848, a TLR7/8 agonist) nanoparticles (RTP NPs) to achieve tumor-selective immunotherapy while avoiding systemic adverse effects.

View Article and Find Full Text PDF

Mixed exposure to PFOA and PFOS induces oocyte apoptosis and subfertility in mice by activating the Hippo signaling pathway.

Reprod Toxicol

December 2024

Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) are synthetic perfluorinated compounds known for their persistence in the environment and reproduction toxicity. PFAS, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), have been identified in the follicular fluid of infertile women. However, the specific of PFOA and PFOS mixture on oocyte quality and female fertility remain unclear.

View Article and Find Full Text PDF

Since the establishment of the COVID-19 pandemic, a range of studies have been developed to understand the pathogenesis of SARS-CoV-2 infection, vaccine development, and therapeutic testing. However, the possible impacts that these viruses can have on non-target organisms have been explored little, and our knowledge of the consequences of the COVID-19 pandemic for biota is still very limited. Thus, the current study aimed to address this knowledge gap by evaluating the possible impacts of oral exposure of C57Bl/6 J female mice to SARS-CoV-2 lysate protein (at 20 µg/L) for 30 days, using multiple methods, including behavioral assessments, biochemical analyses, and histopathological examinations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!