A de novo 2q37.2 deletion encompassing AGAP1 and SH3BP4 in a patient with autism and intellectual disability.

Eur J Med Genet

CHU Nantes, Service de Génétique Médicale, Nantes, France; INSERM, UMR 1238, Bone Sarcoma and Remodeling of Calcified Tissue, Nantes, France.

Published: December 2019

Autism spectrum disorders are complex neurodevelopmental syndromes characterized by phenotypic and genetic heterogeneity. Further identification of causal genes may help in better understanding the underlying mechanisms of the disorder, thus improving the patients' management. To date, abnormal synaptogenesis is thought to be one of the major underlying causes of autism spectrum disorders. Here, using oligoarray-based comparative genomic hybridization, we identified a de novo deletion at 2q37.2 locus spanning 1 Mb and encompassing AGAP1 and SH3BP4, in a boy with autism and intellectual disability. Both genes have been described as being involved in endosomal trafficking, and AGAP1 in particular has been shown to be expressed in the developing brain and to play a role in dendritic spine formation and synapse function, making it a potential causative gene to our patient's phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmg.2018.11.020DOI Listing

Publication Analysis

Top Keywords

encompassing agap1
8
agap1 sh3bp4
8
autism intellectual
8
intellectual disability
8
autism spectrum
8
spectrum disorders
8
novo 2q372
4
2q372 deletion
4
deletion encompassing
4
sh3bp4 patient
4

Similar Publications

Objective: Nonsyndromic cleft lip and/or cleft palate (NSCL/P) have multifactorial etiology where genetic factors, gene-environment interactions, stochastic factors, gene-gene interactions, and parent-of-origin effects (POEs) play cardinal roles. POEs arise when the parental origin of alleles differentially impacts the phenotype of the offspring. The aim of this study was to identify POEs that can increase risk for NSCL/P in humans using a genome-wide dataset.

View Article and Find Full Text PDF

A de novo 2q37.2 deletion encompassing AGAP1 and SH3BP4 in a patient with autism and intellectual disability.

Eur J Med Genet

December 2019

CHU Nantes, Service de Génétique Médicale, Nantes, France; INSERM, UMR 1238, Bone Sarcoma and Remodeling of Calcified Tissue, Nantes, France.

Autism spectrum disorders are complex neurodevelopmental syndromes characterized by phenotypic and genetic heterogeneity. Further identification of causal genes may help in better understanding the underlying mechanisms of the disorder, thus improving the patients' management. To date, abnormal synaptogenesis is thought to be one of the major underlying causes of autism spectrum disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!