A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transcriptomic and physiological analyses reveal drought adaptation strategies in drought-tolerant and -susceptible watermelon genotypes. | LitMetric

Transcriptomic and physiological analyses reveal drought adaptation strategies in drought-tolerant and -susceptible watermelon genotypes.

Plant Sci

State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:

Published: January 2019

Drought stress has become one of the most urgent environmental hazards for horticultural crops. In this research, we analyzed watermelon adaptation strategies to drought stress in drought-tolerant (M20) and -susceptible (Y34) genotypes via transcriptomic and physiological analyses. After drought stress, a total of 6228 and 4311 differentially expressed genes (DEGs) were observed in Y34 and M20, respectively. Numerous DEGs were involved in various defense responses such as antioxidation, protein protection, osmotic adjustment, wax accumulation, hormone signaling, and melatonin biosynthesis. Accordingly, the contents of ABA, melatonin, wax, and some osmoprotectants were increased by drought stress in both Y34 and especially M20. Exogenous application of melatonin or ABA induced wax accumulation and drought tolerance and melatonin may function upstream of ABA. In comparison to Y34, M20 was more able to activate ABA signaling, melatonin biosynthesis, osmotic adjustment, antioxidation, and wax accumulation under drought stress. These stronger responses confer M20 tolerance to drought. Photosynthesis and most DEGs involved in photosynthesis and cell growth were decreased by drought stress in both M20 and especially Y34. For drought-susceptible genotypes, growth retardation may be an important mechanism for saving and redistributing resources in order to reprogram stress signaling networks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2018.10.016DOI Listing

Publication Analysis

Top Keywords

drought stress
24
y34 m20
12
wax accumulation
12
drought
9
transcriptomic physiological
8
physiological analyses
8
adaptation strategies
8
degs involved
8
osmotic adjustment
8
signaling melatonin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!