A DREB1 gene from zoysiagrass enhances Arabidopsis tolerance to temperature stresses without growth inhibition.

Plant Sci

College of Life & Environmental Science, Minzu University of China, Beijing, PR China. Electronic address:

Published: January 2019

The DREB (dehydration-responsive element binding) protein family comprises transcription factors that can increase the survivability of a plant under abiotic stresses by regulating expression of multiple genes and altering downstream metabolism at the cost of growth retardation and developmental delay. In this study, a gene for the DREB1-type transcription factor, designated ZjDREB1.4, was isolated from zoysiagrass (Zoysia japonica Steud.), a popular warm-season turfgrass. This gene contains a conserved AP2/ERF DNA-binding domain flanking the signature sequence of DREB1 and belongs to a DREB1 branch in the grass family that expands in the warm-season species. The expression of ZjDREB1.4 was significantly induced by chilling stress (4-15 °C), moderately induced by salt stress, and only slightly induced by drought stress. The product of ZjDREB1.4 was targeted to the nucleus and showed strong transactivation activity but weak binding to the DRE with ACCGAC as the core sequence. The ZjDREB1.4 protein bound to GCCGAC more preferentially than to ACCGAC. Overexpression of ZjDREB1.4 in Arabidopsis induced the expression of multiple genes including a part of the CBF-regulon, and moderately increased the levels of proline and soluble sugars under normal growth conditions. The transgenic Arabidopsis plants showed an increase in tolerance to high and freezing temperature stresses without obvious growth inhibition and with only a few days delay in bolting. ZjDREB1.4 is potentially useful for producing transgenic plants that are tolerant to high temperature and/or cold stresses with few negative effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2018.10.009DOI Listing

Publication Analysis

Top Keywords

temperature stresses
8
growth inhibition
8
expression multiple
8
multiple genes
8
zjdreb14
6
dreb1 gene
4
gene zoysiagrass
4
zoysiagrass enhances
4
enhances arabidopsis
4
arabidopsis tolerance
4

Similar Publications

Brown adipose tissue (BAT) is a metabolically highly active tissue that dissipates energy stored within its intracellular triglyceride droplets as heat. Others have previously utilized MRI to show that the fat fraction of human supraclavicular BAT (scBAT) decreases upon cold exposure, compared with baseline (i.e.

View Article and Find Full Text PDF

Study on Long-Term Temperature Variation Characteristics of Concrete Bridge Tower Cracks Based on Deep Learning.

Sensors (Basel)

January 2025

Key Laboratory of Concrete and Pre-Stressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210096, China.

Monitoring existing cracks is a critical component of structural health monitoring in bridges, as temperature fluctuations significantly influence crack development. The study of the Huai'an Bridge indicated that concrete cracks predominantly occur near the central tower, primarily due to temperature variations between the inner and outer surfaces. This research aims to develop a deep learning model utilizing Long Short-Term Memory (LSTM) neural networks to predict crack depth based on the thermal variations experienced by the main tower.

View Article and Find Full Text PDF

Research Progress in Fiber Bragg Grating-Based Ocean Temperature and Depth Sensors.

Sensors (Basel)

December 2024

College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China.

Fiber Bragg gratings (FBGs) are widely used in stress and temperature sensing due to their small size, light weight, high resistance to high temperatures, corrosion, electromagnetic interference, and low cost. In recent years, various structural enhancements and sensitization to FBGs have been explored to improve the performance of ocean temperature and depth sensors, thereby enhancing the accuracy and detection range of ocean temperature and depth data. This paper reviews advancements in temperature, pressure, and dual-parameter enhancement techniques for FBG-based sensors.

View Article and Find Full Text PDF

Background/objectives: Polyphenols represent a new strategy of dietary intervention for heat stress regulation.

Methods: The metabolic and genetic effects of three heat stress-regulated mung bean polyphenols on mouse small intestinal epithelial Mode-k cells were investigated by metabolomics-transcriptomics correlation analysis at different heat stress levels.

Results: Lipid metabolism, energy metabolism, and nervous system pathways were the key metabolic regulatory pathways.

View Article and Find Full Text PDF

This study evaluates the stress tolerance and metabolic adaptability of twelve yeast strains, including eleven commercial strains from Wyeast Laboratories and one prototrophic laboratory strain, under industrially relevant conditions. Yeast strains were assessed for their fermentation performance and stress responses under glucose limitation, osmotic stress, acid stress, elevated ethanol concentrations, and temperature fluctuations. Results revealed significant variability in glucose consumption, ethanol production, and stress tolerance across strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!