Mini review: Revisiting mobile RNA silencing in plants.

Plant Sci

Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Worcester-Hangzhou Joint Molecular Plant Health Laboratory, Institute of Science and the Environment, University of Worcester, WR2 6AJ, UK; Warwick-Hangzhou RNA Signaling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, UK. Electronic address:

Published: January 2019

Non-cell autonomous RNA silencing can spread from cell to cell and over long-distances in animals and plants. This process is genetically determined and requires mobile RNA signals. Genetic requirement and molecular nature of the mobile signals for non-cell-autonomous RNA silencing were intensively investigated in past few decades. No consensus dogma for mobile silencing can be reached in plants, yet published data are sometimes inconsistent and controversial. Thus, the genetic requirements and molecular signals involved in plant mobile silencing are still poorly understood. This article revisits our present understanding of intercellular and systemic non-cell autonomous RNA silencing, and summarises current debates on RNA signals for mobile silencing. In particular, we discuss new evidence on siRNA mobility, a DCL2-dependent genetic network for mobile silencing and its potential biological relevance as well as 22 nt siRNA being a mobile signal for non-cell-autonomous silencing in both Arabidopsis and Nicotiana benthamiana. This sets up a new trend in unravelling genetic components and small RNA signal molecules for mobile silencing in (across) plants and other organisms of different kingdoms. Finally we raise several outstanding questions that need to be addressed in future plant silencing research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6556431PMC
http://dx.doi.org/10.1016/j.plantsci.2018.10.025DOI Listing

Publication Analysis

Top Keywords

mobile silencing
20
rna silencing
16
silencing
11
mobile
9
mobile rna
8
silencing plants
8
non-cell autonomous
8
autonomous rna
8
rna signals
8
rna
7

Similar Publications

Background: Argonautes (AGOs) are a type of protein that degrade specific messenger RNAs, consequently reducing the expression of a specific gene. These proteins consist of small, single-stranded RNA or DNA and may provide a route for detecting and silencing complementary mobile genetic elements. In this research, we investigated which AGO(s) were involved in Kawasaki disease (KD).

View Article and Find Full Text PDF

In this study, we identify and characterize a novel phage-inducible chromosomal island (PICI) found in commensal Escherichia coli MP1. This novel element, EcCIMP1, is induced and mobilized by the temperate helper phage vB_EcoP_Kapi1. EcCIMP1 contributes to superinfection immunity against its helper phage, impacting bacterial competition outcomes.

View Article and Find Full Text PDF

Introduction: Coronary artery disease (CAD) and peripheral artery disease (PAD) increase the risks of cardiovascular events and death. Digital health technologies are rapidly expanding to improve healthcare quality and access. The Care4Today Connect (C4T CAD-PAD) mobile application is designed to help patients with CAD and/or PAD improve medication adherence, learn about their disease, make lifestyle modifications, and enhance healthcare provider (HCP) connection via an HCP-facing portal.

View Article and Find Full Text PDF

Plants produce small RNAs that accomplish a surprisingly versatile number of functions. The heterogeneity of functions of plant small RNAs is evident at the tissue-specific level. In particular, in the last years, the study of their activity in reproductive tissues has unmasked an unexpected diversity in their biogenesis and roles.

View Article and Find Full Text PDF

Epigenetic control of T-DNA during transgenesis and pathogenesis.

Plant Physiol

December 2024

Université Paris-Saclay, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France.

Mobile elements known as T-DNAs are transferred from pathogenic Agrobacterium to plants and reprogram the host cell to form hairy roots or tumors. Disarmed nononcogenic T-DNAs are extensively used to deliver transgenes in plant genetic engineering. Such T-DNAs were the first known targets of RNA silencing mechanisms, which detect foreign RNA in plant cells and produce small RNAs that induce transcript degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!