Profiles of bacterial assemblages from microplastics of tropical coastal environments.

Sci Total Environ

St. John Island National Marine Laboratory, Tropical Marine Science Institute (TMSI), National University of Singapore, 18 Kent Ridge Road, 119227, Singapore.

Published: March 2019

Plastic waste is a global issue of an increasing concern in aquatic ecosystems. Microplastics form a large proportion of plastic pollution in marine environments. Although microplastics are prevalent, their distribution along the coasts of tropical regions is not well studied. Microplastic pieces (1-5 mm) were collected from two distinct regions along the coastlines of Singapore, from the northern coast in the Johor Strait and the southern coast in the Singapore Strait. Microplastics were present in concentrations ranging from 9.20-59.9 particles per kg of dry sand sediment. The majority of microplastics identified were foam particles (55%) and fragments (35%). Microplastics were significantly more abundant on heavily populated beaches compared to pristine beaches. High throughput sequencing was used to profile the communities of bacteria on the surfaces of microplastic particles. The structure of the microbial communities was primarily characterised by Proteobacteria and Bacteroidetes and were distinct across sites. Hydrocarbon-degrading genera such as Erythrobacter were dominant in areas with heavy shipping and pollution. Potential pathogenic genera such as Vibrio and Pseudomonas were also identified. This study highlights the diverse bacterial assemblages present on marine microplastic surfaces and the importance of understanding the bacterial plastisphere.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.11.250DOI Listing

Publication Analysis

Top Keywords

bacterial assemblages
8
microplastics
6
profiles bacterial
4
assemblages microplastics
4
microplastics tropical
4
tropical coastal
4
coastal environments
4
environments plastic
4
plastic waste
4
waste global
4

Similar Publications

How hydrodynamic conditions drive the regime shift towards a bacterial state with lower carbon emissions in river bends.

Environ Res

January 2025

Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P.R. China.

Hydrodynamic conditions influenced by river sinuosity may alter carbon (e.g., carbon dioxide and methane) emissions and microbial communities responsible for nutrient turnover.

View Article and Find Full Text PDF

Key bacteria decomposing animal and plant detritus in deep sea revealed via long-term incubation in different oceanic areas.

ISME Commun

January 2024

Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources of PR China, 178 Daxue Road, Siming District, Xiamen City, Fujian Province 361005, PR China.

Transport of organic matter (OM) occurs widely in the form of animal and plant detritus in global oceans, playing a crucial role in global carbon cycling. While wood- and whale-falls have been extensively studied, the process of OM remineralization by microorganisms remains poorly understood particularly in pelagic regions on a global scale. Here, enrichment experiments with animal tissue or plant detritus were carried out in three deep seas for 4-12 months using the deep-sea incubators.

View Article and Find Full Text PDF

Integrated biological-chemical system for phenol removal from petrochemicals wastewater.

Environ Sci Pollut Res Int

December 2024

Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt.

Phenol is a highly concerning pollutant in petrochemical industrial wastewater. It is extremely poisonous, carcinogenic, and persistent, therefore, it bioaccumulates in the food chain reaching humans, where it causes acute irritation to the skin, eyes, and respiratory tract, as well as chronic effects on the liver, kidneys, and nervous system. It spills or leaks easily into surface water or groundwater sources, leading to the creation of other harmful substituted compounds.

View Article and Find Full Text PDF

Distributions of DMS and DMSP and the influences of planktonic community assemblages in the Bohai Sea and Yellow Sea.

Mar Environ Res

December 2024

Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China. Electronic address:

Dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP) are important sulfur compounds influenced by community assemblages of plankton. The distributions of DMS, DMSP, DMSP lyase activity (DLA), DMSP-consuming bacteria (DCB), and community structures of phytoplankton and zooplankton were investigated during summer in the Bohai Sea and Yellow Sea. The variety ranges of DMS, dissolved DMSP (DMSP), and particulate DMSP (DMSP) concentrations in the surface seawater were 1.

View Article and Find Full Text PDF

Understanding the processes and factors that influence the structure of host-associated microbial assemblages has been a major area of research as these assemblages play a role in host defense against pathogens. Previous work has found that bacterial taxa within bat cutaneous microbial assemblages have antifungal capabilities against the emerging fungal pathogen, Pseudogymnoascus destructans. However, our understanding of natural fluctuations in these cutaneous microbial assemblages over time due to shifts in host habitat is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!