A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Untargeted lipidomic evaluation of hydric and heat stresses on rice growth. | LitMetric

Untargeted lipidomic evaluation of hydric and heat stresses on rice growth.

J Chromatogr B Analyt Technol Biomed Life Sci

Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.

Published: January 2019

Environmental stresses are the major factors that limit the geographical distribution of plants. As a consequence, plants have developed different strategies to adapt to these environmental changes among which can be outlined the maintenance of membranes' integrity and fluidity. Lipids are key molecules for this environmental adaptation and a comprehensive understand of the molecular mechanisms underlying is still required. Here, lipidome changes in Japanese rice (Oryza sativa var. Japonica) upon heat and hydric stresses are assessed using an untargeted approach based on liquid chromatography coupled with mass spectrometry (LC-MS). The obtained data were analyzed using different multivariate data analysis tools. A total number of 298 lipids responded to these abiotic stresses, and 128 of them were tentatively identified. Diacylglycerols (DG), triacylglycerols (TG), phosphatidylcholines (PC) and phosphatidylethanolamines (PE) were the most altered lipid families heat and hydric stress. Interpretation of the obtained results showed relevant changes related to the unsaturation degree in the identified lipids. In the case of heat stress, a decrease in the unsaturation degree of lipids can be linked to an increase in the cell membranes' rigidity. In contrast, the hydric stress produced an increase in the lipids unsaturation degree causing an increase in the cell membranes' fluidity, in an attempt to adapt to these non-optimal conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2018.11.018DOI Listing

Publication Analysis

Top Keywords

unsaturation degree
12
heat hydric
8
hydric stress
8
increase cell
8
cell membranes'
8
lipids
5
untargeted lipidomic
4
lipidomic evaluation
4
hydric
4
evaluation hydric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!