This study evaluated the performance of a pilot-scale hybrid constructed wetland system for secondary effluent and investigated bulk organic matter characteristics. The hybrid constructed wetland consisted of a vertical-flow (VF) bed followed by a horizontal-flow (HF) bed. We also investigated the effects of hydraulic loading rates and influent organic load on the performance of the pilot-scale VF-HF hybrid constructed wetland. The results showed a high removal efficiency for suspended solids (>95%) and organic matter as determined by total organic carbon (>98.5%) and dissolved organic carbon (>70%), but no significant change in nitrogen removal was observed. The wetland treatment efficiency for suspended solids and organic matter showed a good buffer capacity even when hydraulic loading rates increased from 750 to 1500 L m d and 500-1000 L m d during the VF and HF stages, respectively. Moreover, there was no significant change in the performance when influent organic load increased eight-fold. Fluorescence excitation-emission matrix and liquid chromatography-organic carbon detection (LC-OCD) were used to investigate the dissolved organic matter characteristics in the hybrid VF-HF constructed wetland. Fluorescence excitation-emission matrix spectroscopy showed that both protein- and humic-like substances did not significantly change in the effluent when hydraulic loading rates and organic load increased by two- and eight-fold, respectively. Biopolymers determined using LC-OCD were effectively removed via the VF and HF stage wetlands, indicating the occurrence of biodegradation. Fluorescence excitation-emission matrix spectroscopy and LC-OCD provided the fate of dissolved organic matter characteristics in the hybrid VF-HF constructed wetland.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2018.11.110 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!