Capacitively coupled electrical stimulation of rat chondroepiphysis explants: A histomorphometric analysis.

Bioelectrochemistry

Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia; Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia. Electronic address:

Published: April 2019

AI Article Synopsis

Article Abstract

The growth plate is a cartilaginous layer present from the gestation period until the end of puberty where it ossifies joining diaphysis and epiphysis. During this period several endocrine, autocrine, and paracrine processes within the growth plate are carried out by chondrocytes; therefore, a disruption in cellular functions may lead to pathologies affecting bone development. It is known that electric fields impact the growth plate; however, parameters such as stimulation time and electric field intensity are not well documented. Accordingly, this study presents a histomorphometrical framework to assess the effect of electric fields on chondroepiphysis explants. Bones were stimulated with 3.5 and 7 mV/cm, and for each electric field two exposure times were tested for 30 days (30 min and 1 h). Results evidenced that electric fields increased the hypertrophic zones compared with controls. In addition, a stimulation of 3.5 mV/cm applied for 1 h preserved the columnar cell density and its orientation. Moreover, a pre-hypertrophy differentiation in the center of the chondroepiphysis was observed when explants were stimulated during 1 h with both electric fields. These findings allow the understanding of the effect of electrical stimulation over growth plate organization and how the stimulation modifies chondrocytes morphophysiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2018.11.004DOI Listing

Publication Analysis

Top Keywords

growth plate
16
electric fields
16
electrical stimulation
8
chondroepiphysis explants
8
electric field
8
electric
6
stimulation
5
capacitively coupled
4
coupled electrical
4
stimulation rat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!