Coordinated existence of multiple gangliosides is required for cartilage metabolism.

Osteoarthritis Cartilage

Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan. Electronic address:

Published: February 2019

Objective: Gangliosides, ubiquitously existing membrane components that modulate transmembrane signaling and mediate cell-to-cell and cell-to-matrix interactions, are key molecules of inflammatory and neurological disorders. However, the functions of gangliosides in the cartilage degradation process remain unclear. We investigated the functional role of gangliosides in cartilage metabolism related to osteoarthritis (OA) pathogenesis.

Design: We generated knockout (KO) mice by targeting the β1, 4-N-acetylgalactosaminyltransferase (GalNAcT) gene, which encodes an enzyme of major gangliosides synthesis, and the GD3 synthase (GD3S) gene, which encodes an enzyme of partial gangliosides synthesis. In vivo OA and in vitro cartilage degradation models were used to evaluate the effect of gangliosides on the cartilage degradation process.

Results: The GalNAcT and GD3S KO mice developed and grew normally; nevertheless, OA changes in these mice were enhanced with aging. The GalNAcT KO mice showed significantly enhanced OA progression compared to GD3S mice in vivo. Both GalNAcT and GD3S KO mice showed severe IL-1α-induced cartilage degradation ex vivo. Phosphorylation of MAPKs was enhanced in both GalNAcT and GD3S KOs after IL-1α stimulation. Gangliosides modulated by GalNAcT or GD3S rescued an increase of MMP-13 induced by IL-1α in mice lacking GalNAcT or GD3S after exogenous replenishment in vitro.

Conclusion: These data show that the deletion of gangliosides in mice enhanced OA development. Moreover, the gangliosides modulated by GalNAcT are important for cartilage metabolism, suggesting that GalNAcT is a potential target molecule for the development of novel OA treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joca.2018.11.003DOI Listing

Publication Analysis

Top Keywords

galnact gd3s
20
cartilage degradation
16
cartilage metabolism
12
gangliosides cartilage
12
gd3s mice
12
mice enhanced
12
gangliosides
10
galnact
9
mice
8
gene encodes
8

Similar Publications

Gangliosides are sialylated glycosphingolipids with essential but enigmatic functions in healthy and disease brains. GD3 is the predominant species in neural stem cells (NSCs) and GD3-synthase (sialyltransferase II; ) knockout (GD3S-KO) revealed reduction of postnatal NSC pools with severe behavioral deficits including cognitive impairment, depression-like phenotypes, and olfactory dysfunction. Exogenous administration of GD3 significantly restored the NSC pools and enhanced the stemness of NSCs with multipotency and self-renewal, followed by restored neuronal functions.

View Article and Find Full Text PDF

Ganglioside Microdomains on Cellular and Intracellular Membranes Regulate Neuronal Cell Fate Determination.

Adv Neurobiol

October 2022

Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.

Gangliosides are sialylated glycosphingolipids (GSLs) with essential but enigmatic functions in brain activities and neural stem cell (NSC) maintenance. Our group has pioneered research on the importance of gangliosides for growth factor receptor signaling and epigenetic regulation of NSC activity and differentiation. The primary localization of gangliosides is on cell-surface microdomains and the drastic dose and composition changes during neural differentiation strongly suggest that they are not only important as biomarkers, but also are involved in modulating NSC fate determination.

View Article and Find Full Text PDF

Coordinated existence of multiple gangliosides is required for cartilage metabolism.

Osteoarthritis Cartilage

February 2019

Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan. Electronic address:

Objective: Gangliosides, ubiquitously existing membrane components that modulate transmembrane signaling and mediate cell-to-cell and cell-to-matrix interactions, are key molecules of inflammatory and neurological disorders. However, the functions of gangliosides in the cartilage degradation process remain unclear. We investigated the functional role of gangliosides in cartilage metabolism related to osteoarthritis (OA) pathogenesis.

View Article and Find Full Text PDF

Kidney sulfatides in mouse models of inherited glycosphingolipid disorders: determination by nano-electrospray ionization tandem mass spectrometry.

J Biol Chem

June 2002

Deutsches Krebsforschungszentrum Heidelberg, Abteilung für Zelluläre und Molekulare Pathologie, INF 280, 69120 Heidelberg, Germany.

Sulfatides show structural, and possibly physiological similarities to gangliosides. Kidney dysfunction might be correlated with changes in sulfatides, the major acidic glycosphingolipids in this organ. To elucidate their in vivo metabolic pathway these compounds were analyzed in mice afflicted with inherited glycosphingolipid disorders.

View Article and Find Full Text PDF

Mice expressing only monosialoganglioside GM3 exhibit lethal audiogenic seizures.

J Biol Chem

March 2001

Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA.

Gangliosides are a family of glycosphingolipids that contain sialic acid. Although they are abundant on neuronal cell membranes, their precise functions and importance in the central nervous system (CNS) remain largely undefined. We have disrupted the gene encoding GD3 synthase (GD3S), a sialyltransferase expressed in the CNS that is responsible for the synthesis of b-series gangliosides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!