Papillae revisited and the nature of the adhesive secreting collocytes.

Dev Biol

Evolutionary Developmental Biology, Institute of Zoology, University Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria. Electronic address:

Published: April 2019

AI Article Synopsis

  • Ascidian papillae are vital sensory organs for larval settlement and metamorphosis, but their cellular details remain poorly understood.
  • The study focuses on the 3D structure of papillae in Ciona intestinalis/robusta, identifying cell types like axial columnar cells, primary sensory neurons, and collocytes, complete with proposed molecular markers for each.
  • Key findings reveal that collocytes contain adhesive granules and distinct types of granules with different materials, suggesting an evolutionary link to ancient neurosecretory cells, important for comprehending ascidian larval development.

Article Abstract

Ascidian papillae (palps) constitute a transient sensory adhesive organ that assures larval settlement and the onset of metamorphosis to the filterfeeding adult. Despite the importance of papillae for the ascidian development, their cellular composition is only roughly described. For Ciona intestinalis/robusta, a clear definition of cell numbers and discriminative molecular markers for the different cell types is missing. While some attention was given to neural cell types and their connectivity little is known about the adhesive producing collocytes. We converge serial-section electron microscopy and confocal imaging with various marker combinations to document the 3D organization of the Ciona papillae. We show the papillar development with 4 axial columnar cells (ACCs), 4 lateral primary sensory neurons (PSNs) and 12 central collocytes (CCs). We propose molecular markers for each cell type including novel ones for collocytes. The subcellular characteristics are suggestive of their role in papillar function: the ACCs featuring apical protrusions and microvilli, also contain neuroactive and endocytic vesicles indicative of a chemosensory role. They are clearly distinct from the ciliated glutamatergic PSNs. CCs encircle the ACCs and contain microvilli, small endocytic vesicles and notably a large numbers of adhesive granules that, according to element analysis and histochemistry, contain glycoproteins. Interestingly, we detect two different types of collocyte granules, one of them containing fibrous material and larger quantities of polysaccharides. Consistently, carbohydrate specific lectins label the papillar apex, the granules within CCs and the adhesive plaques upon larval attachment. We further propose CCs to derive from an evolutionary ancient neurosecretory cell type. Our findings contribute to understanding the development of the anterior ('new head') region of the Ciona larva and notably the adhesive secreting cells which has implications for developmental biology, cell differentiation and evolution, but also bioadhesion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2018.11.012DOI Listing

Publication Analysis

Top Keywords

adhesive secreting
8
molecular markers
8
markers cell
8
cell types
8
cell type
8
endocytic vesicles
8
adhesive
6
cell
6
papillae
4
papillae revisited
4

Similar Publications

A Low-Modulus Phosphatidylserine-Exposing Microvesicle Alleviates Skin Inflammation via Persistent Blockade of M1 Macrophage Polarization.

Int J Mol Sci

January 2025

Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.

Inflammatory skin diseases comprise a group of skin conditions characterized by damage to skin function due to overactive immune responses. These disorders not only impair the barrier function of the skin but also deteriorate the quality of life and increase the risk of psychiatric issues. Here, a low-modulus phosphatidylserine-exposing microvesicle (deformed PSV, D-PSV) was produced, characterized, and evaluated for its potential therapeutic function against skin diseases.

View Article and Find Full Text PDF

The Role of Fractalkine in Diabetic Retinopathy: Pathophysiology and Clinical Implications.

Int J Mol Sci

January 2025

Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan.

Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies.

View Article and Find Full Text PDF

cyclic lipopeptides (CLP), part of the three main families-surfactins, iturins, and fengycins-are secondary metabolites with a unique chemical structure that includes both peptide and lipid components. Being amphiphilic compounds, CLPs exhibit antimicrobial activity in vitro, damaging the membranes of microorganisms. However, the concentrations of CLPs used in vitro are difficult to achieve in natural conditions.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) has antimicrobial properties and is also known to stimulate the immune system. These properties could be useful for the development of a novel therapeutic or preventive strategy against respiratory infections in the upper respiratory tract (URT) such as ventilator-associated pneumonia (VAP) without inducing an immune overreaction. This study investigated the cellular responses of polymorphonuclear neutrophils (PMNs) after exposure to CAP in a three-dimensional (3D) model of the URT.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) represent one of the most promising and rapidly emerging anti-cancer therapies because they combine the cytotoxic effect of the conjugate payload and the high selectivity of the monoclonal antibody, which binds a specific membrane antigen expressed by the tumor cells. In non-small cell lung cancer (NSCLC), ADCs are being investigated targeting human epidermal growth factor receptor 2 (), human epidermal growth factor receptor 3 (), trophoblast cell surface antigen 2 (), Mesenchymal-epithelial transition factor (), and carcinoembryonic antigen-related cell adhesion molecule 5 (). To date, Trastuzumab deruxtecan is the only ADC that has been approved by the FDA for the treatment of patients with NSCLC, but several ongoing studies, both using ADCs as monotherapy and combined with other therapies, are investigating the efficacy of new ADCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!