Constraint-induced movement therapy (CIMT), which forces the use of the impaired limb by restraining the unaffected limb, has been used extensively for the recovery of limb motor function after stroke. However, the underlying mechanism of CIMT remains unclear. Diffusion tensor imaging (DTI) is a well-known neuroimaging technique that reflects the microstructure of white matter tracts and potential changes associated with different treatments. The aim of this study is to use DTI imaging to determine how corticospinal tract (CST) fibers remodel in ischemic rats with CIMT. In the present study, rats were randomly divided into three groups: a middle cerebral artery occlusion group (MCAO), a therapeutic group (MCAO + CIMT), and a sham-operated group (sham). A plaster cast was used to restrict the unaffected limb of the rats in the MCAO + CIMT group for 14 days. The Catwalk system was used to assess the limb motor function of rats. Fractional anisotropy (FA) and the average diffusion coefficient (ADC) of the CST were quantified through DTI. The expression of the c-Jun-N-terminal kinase signaling pathway (JNK) was examined after 14 days of CIMT. We found that CIMT could accelerate and enhance motor function recovery, and the MCAO + CIMT group showed significantly increased FA values in the ipsilesional posterior limb of internal capsule (PLIC) compared with the MCAO group. In addition, we found no significant difference in the ratio of phosphorylated-JNK/total-JNK among the three groups, whereas the expression of P-JNK decreased significantly in the chronic phase of stroke. In conclusion, CIMT-induced functional recovery following ischemic stroke through facilitation of the remodeling of ipsilesional CST, and restoration after ischemic stroke may be associated with the declining value of the ratio of P-JNK/JNK.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2018.11.011 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720.
Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.
Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405.
Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.
Many bacteria swim in liquid or swarm on surface using the flagellum rotated by a motor driven by specific ion flow. The motor consists of the rotor and stator, and the stator converts the energy of ion flow to mechanical rotation. However, the ion pathway and the mechanism of stator rotation coupled with specific ion flow are still obscure.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Microbiology, University of Georgia, Athens, Georgia, United States of America.
The Helicobacter pylori flagellar motor contains several accessory structures that are not found in the archetypal Escherichia coli and Salmonella enterica motors. H. pylori hp0838 encodes a previously uncharacterized lipoprotein and is in an operon with flgP, which encodes a motor accessory protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!