A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MALDI-Imaging for Classification of Epithelial Ovarian Cancer Histotypes from a Tissue Microarray Using Machine Learning Methods. | LitMetric

Purpose: Precise histological classification of epithelial ovarian cancer (EOC) has immanent diagnostic and therapeutic consequences, but remains challenging in histological routine. The aim of this pilot study is to examine the potential of matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry in combination with machine learning methods to classify EOC histological subtypes from tissue microarray.

Experimental Design: Formalin-fixed-paraffin-embedded tissue of 20 patients with ovarian clear-cell, 14 low-grade serous, 19 high-grade serous ovarian carcinomas, and 14 serous borderline tumors are analyzed using MALDI-Imaging. Classifications are computed by linear discriminant analysis (LDA), support vector machines with linear (SVM-lin) and radial basis function kernels (SVM-rbf), a neural network (NN), and a convolutional neural network (CNN).

Results: MALDI-Imaging and machine learning methods result in classification of EOC histotypes with mean accuracy of 80% for LDA, 80% SVM-lin, 74% SVM-rbf, 83% NN, and 85% CNN. Based on sensitivity (69-100%) and specificity (90-99%), CCN and NN are most suited to EOC classification.

Conclusion And Clinical Relevance: The pilot study demonstrates the potential of MALDI-Imaging derived proteomic classifiers in combination with machine learning algorithms to discriminate EOC histotypes. Applications may support the development of new prognostic parameters in the assessment of EOC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prca.201700181DOI Listing

Publication Analysis

Top Keywords

machine learning
16
learning methods
12
classification epithelial
8
epithelial ovarian
8
ovarian cancer
8
pilot study
8
combination machine
8
neural network
8
eoc histotypes
8
eoc
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!