In cereal crops, ABA deficiency during seed maturation phase causes pre-harvest sprouting (PHS), and molybdenum cofactor (MoCo) is required for ABA biosynthesis. Here, two rice PHS mutants F254 and F5-1 were characterized. In addition to the PHS, these mutants showed pleiotropic phenotypes such as twisting and slender leaves, and then died when the seedling developed to four or five leaves. Map-based cloning showed that OsCNX6 and OsCNX1 encoding homologs of MoaE and MoeA were responsible for F254 and F5-1 mutants, respectively. Genetic complementation indicated that OsCNX6 not only rescued the PHS and seedling lethal phenotype of the cnx6 mutant, but also recovered the MoCo-dependent enzyme activities such as xanthine dehydrogenase (XDH), aldehyde oxidase (AO), nitrate reductase (NR) and sulfite oxidase (SO). Expression pattern showed that OsCNX6 was richly expressed in seed during embryo maturation by quantitative reverse transcriptase PCR and RNA in situ hybridization. Furthermore, the OsCNX6 overexpression plants can significantly enhance the MoCo-dependent enzyme activities, and improved the osmotic and salt stress tolerance without unfavorable phenotypes. Collectively, these data indicated that OsCNX6 participated in MoCo biosynthesis, and is essential for rice development, especially for seed dormancy and germination, and OsCNX6 could be an effective target for improving abiotic stress tolerance in rice.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.15607DOI Listing

Publication Analysis

Top Keywords

pre-harvest sprouting
8
molybdenum cofactor
8
phs mutants
8
f254 f5-1
8
indicated oscnx6
8
moco-dependent enzyme
8
enzyme activities
8
stress tolerance
8
oscnx6
6
identification characterization
4

Similar Publications

Haplotype Analysis and Gene Pyramiding for Pre-Harvest Sprouting Resistance in White-Grain Wheat.

Int J Mol Sci

January 2025

Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture/Key Laboratory for Wheat Germplasm Resources and Genetic Improvement in Henan Province, Zhengzhou 450002, China.

The Huanghuai winter wheat region, China's primary wheat-producing area, predominantly cultivates white-grained wheat. Pre-harvest sprouting (PHS) significantly impacts yield and quality, making the breeding of PHS-resistant varieties crucial for ensuring China's wheat production security. This study evaluated the PHS rate of 344 white-grained wheat varieties over two consecutive growing seasons (2022/2023 and 2023/2024).

View Article and Find Full Text PDF

Background: Pre-harvest sprouting (PHS) is one of the most important problems associated with the severe decrease of yield and quality under disaster weather of continuous rain in wheat harvesting stage. At present, the functions and mechanisms related to the involvement of post-transcriptional regulation has not been studied very clearly in PHS resistance.

Results: This study compared the differences of germinated seeds in miRNAome between the PHS-tolerant and PHS-susceptible white wheat varieties.

View Article and Find Full Text PDF

Identification and quantitative trait locus mapping of Tartary buckwheat pre-harvest sprouting.

J Sci Food Agric

January 2025

Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China.

Background: Tartary buckwheat (Fagopyrum tartaricum) is particularly vulnerable to pre-harvest sprouting (PHS) due to its extended flowering and fruiting cycle, especially during periods of prolonged rainfall. This susceptibility has significant adverse effects on yield, quality and post-harvest processing. In this study, a recombinant inbred lines (RILs) population (XJ-RILs) was developed from a cross between the PHS-susceptible Tartary buckwheat variety 'Xiaomiqiao' (female parent) and the highly PHS-resistant variety 'Jinqiaomai 2' (male parent).

View Article and Find Full Text PDF

Unlabelled: Pre-harvest sprouting (PHS) of wheat ( L.) is one of the complex traits that result in rainfall-dependent reductions in grain production and quality worldwide. Breeding new varieties and germplasm with PHS resistance is of great importance to reduce this problem.

View Article and Find Full Text PDF
Article Synopsis
  • Alanine aminotransferase (AlaAT) is an important enzyme in plants that influences key processes like preharvest sprouting, stress tolerance, and nitrogen efficiency.
  • The review highlights advancements in understanding AlaAT's molecular genetics, including gene cloning related to dormancy, which can impact crop yields and plant physiology.
  • Future research and biotechnology strategies, such as genome editing and speed breeding, are expected to enhance the resilience of crop plants against climate change by manipulating AlaAT functions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!