Bell state measurement (BSM) plays crucial roles in photonic quantum information processing. The standard linear optical BSM is based on Hong-Ou-Mandel interference where two photons meet and interfere at a beamsplitter (BS). However, a generalized two-photon interference is not based on photon-photon interaction, but interference between two-photon probability amplitudes. Therefore, it might be possible to implement BSM without interfering photons at a BS. Here, we investigate a linear optical BSM scheme which does not require two photon overlapping at a BS. By unleashing the two photon coexistence condition, it can be symmetrically divided into two parties. The symmetrically dividable property suggests an informationally symmetrical BSM between remote parties without a third party. We also present that our BSM scheme can be used for Bell state preparation between remote parties without a third party. Since our BSM scheme can be easily extended to multiple photons, it can be useful for various quantum communication applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.029539 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!