This paper explores the performance potential of gratings based on tungsten/hafnia (W/HfO) stacks for thermophotovoltaic thermal emitters via numerical simulations. Structures consisting of a W grating over a HfO spacer layer and a W substrate are analyzed over a range of geometries. For shallow gratings (W grating thickness much smaller than the grating pitch), an emittance of 99.9% can be achieved for transverse magnetic (TM) polarization, but the transverse electric (TE) performance is appreciably lower. For deep gratings (W grating thickness on the order of the grating pitch), peak emittances of 97.8% and 99.7% for TE and TM polarizations, respectively, are achieved. We find that both surface plasmon polaritons and magnetic polaritons play a crucial role in shaping the emittance for TM radiation. On the other hand, cavity resonances are responsible for the almost perfect emittance in the case of TE polarization. These results suggest that by introducing an HfO layer it is possible to reach high emittance for operating temperatures that match the absorption characteristics of GaSb and InGaAs photovoltaic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.26.00A929DOI Listing

Publication Analysis

Top Keywords

thermal emitters
8
gratings grating
8
grating thickness
8
grating pitch
8
grating
6
study w/hfo
4
w/hfo grating
4
grating selective
4
selective thermal
4
emitters thermophotovoltaic
4

Similar Publications

We have previously shown in small studies that full brain Transcranial Radiofrequency Wave Treatment (TRFT) to subjects with Alzheimer's Disease could stop and reverse their cognitive decline. An 8-emitter head device, the "MemorEM", was used in these studies to provide TRFT at 915 MHz frequency and power level of 1.6 W/kg Specific Absorption Rate (SAR) during daily 1-hour treatments.

View Article and Find Full Text PDF

The degradation mechanism of multi-resonance thermally activated delayed fluorescence materials.

Nat Commun

January 2025

Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

1,4-Azaborine-based arenes are promising electroluminescent emitters with thermally activated delayed fluorescence (TADF), offering narrow emission spectra and high quantum yields due to a multi-resonance (MR) effect. However, their practical application is constrained by their limited operational stability. This study investigates the degradation mechanism of MR-TADF molecules.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the development of new thermally activated delayed fluorescence (TADF) materials that enhance reverse intersystem crossing (RISC) to prevent triplet-triplet annihilation.
  • Five derivative molecules with different bridging atoms/groups were analyzed using computational modeling to understand their excited state behaviors in toluene.
  • A unique RISC mechanism was observed, predominantly involving T states instead of the usual transitions, which has implications for designing more efficient TADF compounds.
View Article and Find Full Text PDF

Sulfur-locked multiple resonance emitters for high performance orange-red/deep-red OLEDs.

Nat Commun

January 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are preferred for their high efficiency and high colour purity in organic light-emitting diodes (OLEDs). However, the design strategies of MR-TADF emitters in the red region are very limited. Herein, we propose a concept for a paradigm shift in orange-red/deep-red MR emitters by linking the outer phenyl groups in a classical MR framework through intramolecular sulfur (S) locks.

View Article and Find Full Text PDF

An Efficient Ultra-Narrowband Yellow Emitter Based on a Double-Boron-Embedded Tetraazacyclophane.

Angew Chem Int Ed Engl

January 2025

Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, CHINA.

Ultra-narrowband and highly modifiable multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are crucial for realizing high-performance wide-color-gamut display applications. Despite progress, most MR-TADF emitters remain confined to blue and green wavelengths, with difficulties extending into longer wavelengths without significant spectral broadening, which compromises color purity in full-color organic light-emitting diode (OLED) displays. In this work, we present a novel tetraazacyclophane-based architecture embedding dual boron atoms to remarkedly enhance intramolecular charge transfer through the strategic positioning of boron and nitrogen atoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!