In this paper, a transparent absorption-diffusion-integrated metamaterial (ADMM) based on standing-up lattice structure is proposed which takes full advantage of electromagnetic absorption and destructive interference simultaneously for the suppression of broadband backward scattering within a wide angular domain, especially for the lower-frequency scattering. The proposed ADMM is constituted by two kinds of rhombic and squared ITO lattices arranged in a pseudorandom distribution and then backed with ITO film. Calculation, simulation, and experimental measurement show that the proposed ADMM can achieve low scattering with normalized reflection less than 0.1 in the frequency band of 6.1-21.0GHz. In addition, owing to the standing-up lattice structure, the averaged optical transmittance of our ADMM reaches the optimal value of around 82.1% in the visible wavelength range of 380-780nm, promising an excellent optical transparency. The proposed comprehensive scheme provides an effective way to achieve broadband scattering suppression and high compatibility with optical transparency, enabling a wide range of applications in the window glass of stealth armament, electromagnetic compatibility facility and photovoltaic solar device.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.26.028363DOI Listing

Publication Analysis

Top Keywords

standing-up lattice
12
lattice structure
8
proposed admm
8
optical transparency
8
transparent broadband
4
broadband absorption-diffusion-integrated
4
absorption-diffusion-integrated low-scattering
4
low-scattering metamaterial
4
metamaterial standing-up
4
lattice paper
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!