In this work, a 1550 nm fiber-to-free-space optical communication link is successfully demonstrated employing the superposition of two coherently coupled orbital angular momentum (CCOAM) states. Information is encoded onto both the amplitude and phase of the CCOAM beams and is mapped to a three-dimensional (3D) constellation space using quadrature amplitude modulation (QAM) equivalent architecture. The 3D QAM constellation is based on a higher-order Poincare sphere equivalent for OAM states, and multiple spherical constellations are demonstrated for 64- and 128-QAM, providing a 6X and 7X increase in spectral efficiency by fully exploiting the available 3D space. The experimental results are presented showing a bit error rate (BER) below the forward error correction (FEC) limit. Multiple experimental parameters which could contribute to constellation distortions are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.030969 | DOI Listing |
We propose a simple and effective method to enhance the fidelity of radio signals in a digital-analog radio-over-fiber (DA-RoF) system by introducing nonlinearity into the transmitted signal. This nonlinearity is introduced via an arctangent function for radio signal shaping (RSS), while the corresponding tangent function is used for signal recovery. Nonlinear shaping spreads near-zero amplitude signals and compresses far-from-zero ones.
View Article and Find Full Text PDFIn this paper, we propose and experimentally demonstrate a high rate-distance product visible light communication (VLC) system based on nonlinearity-adaptive hybrid probabilistic-geometric constellation shaping (NA-HCS) for multi-kilometer free space transmission. A pairwise optimization algorithm is employed within the probabilistic shaping (PS) to achieve NA-HCS for constellation according to the pre-estimated signal-to-noise ratio (SNR) of the long-distance nonlinear channel, which proves its efficacy in channel capacity optimization. Using a modified physical free space optical communication equivalent link, the QAM based on NA-HCS technology can flexibly control the net data rate (NDR) to accommodate different intensities of nonlinear impairment within 1 km transmission channel, consistently outperforming PS-APSK and PS-QAM.
View Article and Find Full Text PDFNat Commun
August 2024
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing, China.
With the exponential growth in data density and user ends of wireless networks, fronthaul is tasked with supporting aggregate bandwidths exceeding thousands of gigahertz while accommodating high-order modulation formats. However, it must address the bandwidth and noise limitations imposed by optical links and devices in a cost-efficient manner. Here we demonstrate a high-fidelity fronthaul system enabled by self-homodyne digital-analog radio-over-fiber superchannels, using a broadband electro-optic comb and uncoupled multicore fiber.
View Article and Find Full Text PDFWe propose a non-uniform-quantization digital-analog radio-over-fiber (NUQ-DA-RoF) scheme based on an advanced K-means NUQ algorithm and demonstrate it experimentally in a 2-m 300-GHz photonics-aided wireless fronthaul system. Results show that the NUQ-DA-RoF scheme achieves a SNR gain of ∼1.9 dB compared to the uniform-quantization DA-RoF (UQ-DA-RoF) at an equivalent Common Public Radio Interface equivalent data rate (CPRI-EDR).
View Article and Find Full Text PDFBroadband amplified spontaneous emission (ASE) light sources are recognized for their cost-effective generation. However, their inherent high-intensity noise and the stringent requirement for time delay matching limits their widespread application in coherent optical telecommunication. Here we propose a broadband ASE source-enabled digital-analog radio-over-fiber (DA-RoF) mobile fronthaul architecture, leveraging semiconductor optical amplifiers (SOAs) and multicore fiber in tandem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!