Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this report, an efficient hybrid laser technique, nanosecond laser rear-side processing and femtosecond laser-assisted selective etching (FLSE) for the manufacturing of high-density gas capillary targets, is demonstrated. Cylindrical capillary nozzles for laser betatron X-ray sources were numerically simulated, manufactured from fused silica by 3D laser inscription and characterized using interferometry and gas density reconstruction. The dependence of gas concentration profiles on the wall roughness of cylindrical channels is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.027965 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!