The continuous increase of the average laser power of ultrafast lasers is a challenge with respect to the thermal load of the processing optics. The power which is absorbed in an optical element leads to a temperature increase, temperature gradients, changing refractive index and shape, and finally causes distortions of the transmitted beam. In a first-order approximation this results in a change of the focal position, which may lead to an uncon-trolled change of the laser machining process. The present study reports on investigations on the focal shift induced in thin plano-convex lenses by a high-power ultra-short pulsed laser with an average laser power of up to 525 W. The focal shift was determined for lenses made of different materials (N-BK7, fused silica) and with different coatings (un-coated, broadband coating, specific wavelength coating).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.026020 | DOI Listing |
Ann Bot
January 2025
Key Laboratory of Biodiversity Science and Ecological Engineering of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
Background And Aims: Competition with sympatric diploid progenitor(s) hinders the persistence of polyploids. The hypothesis that polyploids escape from competition through niche shifts has been widely tested; however, niche escape is unlikely to completely avoid competition. Given species growing in less favorable environments likely have weaker competitive abilities, we hypothesize that polyploid populations tend to persist in areas where their progenitors with relatively low habitat suitability.
View Article and Find Full Text PDFFood Res Int
February 2025
College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China.
A multifunctional near-infrared fluorescent probe (Sycy) is synthesized by the one-step condensation reaction of syringaldehyde and tricyanofuran. Sycy can detect HSO within 150 s in the red wine and sugar samples with a low detection limit of 3.5 μM.
View Article and Find Full Text PDFBMC Biol
January 2025
Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, 69120, Germany.
Background: Breast cancer is the leading cause of cancer-related mortality in women. Deregulation of miRNAs is frequently observed in breast cancer and affects tumor biology. A pre-miRNA, such as pre-miR-1307, gives rise to several mature miRNA molecules with distinct functions.
View Article and Find Full Text PDFBMJ Glob Health
January 2025
Population Council, Nairobi, Kenya.
Introduction: Climate change is shaping adolescent and young people's (AYP) transitions to adulthood with significant and often compounding effects on their physical and mental health. The climate crisis is an intergenerational inequity, with the current generation of young people exposed to more climate events over their lifetime than any previous one. Despite this injustice, research and policy to date lacks AYP's perspectives and active engagement.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Institute of Mathematics, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132, Germany.
Accurately identifying the timing and frequency characteristics of impulse components in EEG signals is essential but limited by the Heisenberg uncertainty principle. Inspired by the visual system's ability to identify objects and their locations, we propose a new method that integrates a visual system model with wavelet analysis to calculate both time and frequency features of local impulses in EEG signals. We develop a mathematical model based on invariant pattern recognition by the visual system, combined with wavelet analysis using Krawtchouk functions as the mother wavelet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!