We describe a first distributed polarization analysis (DPA) system using binary polarization rotators in an optical frequency domain reflectormeter (OFDR) capable of measuring the variations of polarization states along a single-mode fiber (SMF). We demonstrate using such a DPA system to accurately measure the distance-resolved birefringence with 12 fiber loops of different radii with different birefringence values along a length of SMF and obtain a bending-induced birefringence coefficient (BBC) of 6.601 × 10 m, agreeing well with the theoretically estimated value of 5.334 × 10 m. To further verify the measurement accuracy, we obtain the birefringence values of the 12 fiber loops of different radii one at a time using a non-distributed polarization analysis system with an accuracy traceable to a birefringence standard made with a quartz crystal, and obtain a BBC value of 6.490 × 10 m, agreeing well with our distributed measurement with a relative error of only 1.68%. In addition, we measure the residual birefringence of the SMF with both distributed and non-distributed polarization analysis systems and obtain similar results with a relative error of only 0.59%. Our experiments not only validate the performances of our DPA system, but also the first to use DPA to experimentally obtain the accurate birefringence values along the SMF and verify the theory of bending-induced birefringence. Our work further proves that such an OFDR-based DPA system is a practical tool for optical component characterization, nondestructive optical material inspection, and distributed fiber optic transversal stress sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.26.025989DOI Listing

Publication Analysis

Top Keywords

polarization analysis
16
dpa system
16
birefringence values
12
birefringence
9
distributed polarization
8
binary polarization
8
polarization rotators
8
distance-resolved birefringence
8
single-mode fiber
8
fiber loops
8

Similar Publications

An aerobic, Gram-stain-positive, motile, coccus-shaped actinomycete, designated strain LSe6-4, was isolated from leaves of sea purslane (Sesuvium portulacastrum L.) in Thailand and subjected to a polyphasic taxonomic studies. Growth of the strain occurred at temperatures between 15 and 38 °C, and with NaCl concentrations 0-13%.

View Article and Find Full Text PDF

Background: Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent and lethal malignancies worldwide. Despite progress in immunotherapy for cancer treatment, its application and efficacy in ESCC remain limited. Therefore, there is an ongoing need to explore potential molecules and therapeutic strategies related to tumor immunity in ESCC.

View Article and Find Full Text PDF

There are several studies that announce the inhibitory behavior of this sort of substance to strengthen the shield of metals, which is one of the positive benefits of green inhibitors. In the current investigation, Araucaria heterophylla studied as a green corrosion inhibitor to avert the mild steel during the acidic cleaning. The examination of this plant's ability to control corrosion at different concentrations in the acidic solution used certain expert measures.

View Article and Find Full Text PDF

Archaeological coins are considered essential sources of historical documentation. Over time, they are subjected to corrosion processes that gradually alter their appearance, shape, and composition. This study aims to evaluate the effects of the patina and/or protective coating on the corrosion process.

View Article and Find Full Text PDF

Bending loss is one of the serious problems for constructing nanophotonic integrated circuits. Recently, many works reported that valley photonic crystals (VPhCs) enable significantly high transmission via 120-degree sharp bends. However, it is unclear whether the high bend-transmission results directly from the valley-photonic effects, which are based on the breaking of inversion symmetry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!