We experimentally demonstrate an all-silicon nanoantenna-based micro-optofluidic cytometer showing a combination of high signal-to-noise ratio (SNR) > 14 dB and ultra-compact size. Thanks to the ultra-high directivity of the antennas (>150), which enables a state-of-the-art sub-micron resolution, we are able to avoid the use of the bulky devices typically employed to collimate light on chip (such as lenses or fibers). The nm-scale antenna cross section allows a dramatic reduction of the optical system footprint, from the mm-scale of previous approaches to a few µm, yielding a notable reduction in the fabrication costs. This scheme paves the way to ultra-compact lab-on-a-chip devices that may enable new applications with potential impact on all branches of biological and health science.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.025645 | DOI Listing |
Photodiagnosis Photodyn Ther
January 2025
Urology Department, the First Affiliated Hospital of Xinjiang Medical University. Xinjiang Clinical Reseach Center for Genitourinary System; State Key Laboratory of Patho-genesis, Prevention and Treatment of High Incidence Diseases in Central Asia. Electronic address:
(background): With the highest 5-year recurrence rate among malignancies, bladder cancer is a relatively common type of cancer that typically originates from the urothelial cells lining the bladder. Additionally, bladder cancer is one of the most financially burdensome neoplasms to medical institutions in terms of management. Hence, prompt identification and accurate handling of bladder cancer are pivotal for enhancing patient prognosis.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. Electronic address:
Soft ionic conductors are promising candidates for epidermal electrodes, flexible sensors, ionic skins, and other soft iontronic devices. However, their inadequate ionic conductivity and mechanical properties (such as toughness and adhesiveness) are still the main constraints for their wide applications in wearable bioelectronics. Herein, an all-biocompatible composite gel with a double-network (DN) strategy is proposed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China.
Soft and stretchable strain sensors are crucial for applications in human-machine interfaces, flexible robotics, and electronic skin. Among these, capacitive strain sensors are widely used and studied; however, they face challenges due to material and structural constraints, such as low baseline capacitance and susceptibility to external interference, which result in low signal-to-noise ratios and poor stability. To address these issues, we propose a U-shaped electrode flexible strain sensor based on liquid metal elastomer (LME).
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China.
Satellite-ground communication is a critical component in the global communication system, significantly contributing to environmental monitoring, radio and television broadcasting, aerospace operations, and other domains. However, the technology encounters challenges in data transmission efficiency, due to the drastic alterations in the communication channel caused by the rapid movement of satellites. In comparison to traditional transmission methods, semantic communication (SemCom) technology enhances transmission efficiency by comprehending and leveraging the intrinsic meaning of information, making it ideal for image transmission in satellite communications.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Computer-Aided Design and Test (CADT) Research Group, McMaster University, Hamilton, ON L8S 4L8, Canada.
A parallelized field-programmable gate array (FPGA) architecture is proposed to realize an ultra-fast, compact, and low-cost dual-channel ultra-wideband (UWB) pulsed-radar system. This approach resolves the main shortcoming of current FPGA-based radars, namely their low processing throughput, which leads to a significant loss of data provided by the radar receiver. The architecture is integrated with an in-house UWB pulsed radar operating at a sampling rate of 20 gigasamples per second (GSa/s).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!