Metasurface optical elements, optical phased arrays constructed from a dense arrangement of nanoscale antennas, are promising candidates for the next generation of flat optical components. Metasurfaces that rely on the Pancharatnam-Berry phase facilitate complete and efficient wavefront control. However, their operation typically requires control over the polarization state of the incident light to achieve a desired optical function. Here, we circumvent this inherent sensitivity to the incident polarization by multiplexing two metasurfaces that were designed to achieve the same optical function with incident light of opposite helicity. We analyze the optical performance of different multiplexing approaches, and demonstrate a subwavelength random interleaved polarization-independent metasurface lens operating in the visible spectrum, providing a diffraction-limited spot size for the shared-aperture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.024835 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China.
Invisibility─the remarkable ability to render objects imperceptible─has long been a persistent dream of humankind. However, traditional cloaking materials are typically rigid and inflexible, limiting their adaptability to various shapes and requirements. Even when flexibility is achieved, uncontrollable scattering in complex electromagnetic environments continues to pose significant challenges in the design of flexible cloaks.
View Article and Find Full Text PDFNanophotonics
April 2024
Department of Bio-Functions and Systems Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 Japan.
Metasurface holograms offer various advantages, including wide viewing angle, small volume, and high resolution. However, full-color animation of high-resolution images has been a challenging issue. In this study, a full-color dielectric metasurface holographic movie with a resolution of 2322 × 2322 was achieved by spatiotemporally multiplexing 30 frames with blue, green, and red color channels at the wavelengths of 445 nm, 532 nm, and 633 nm at the maximum reconstruction speed of 55.
View Article and Find Full Text PDFSymmetry-protected quasi-bound states in the continuum (qBICs) in metasurfaces with broken in-plane symmetry are extensively investigated to achieve high quality-factor (Q-factor) resonances. Herein, we propose the hetero-out-of-plane (H-OP) dielectric metasurface, which is composed of Si cuboids tetramer broken out-of-plane symmetry by adding a layer of silica. Dual polarization-independent qBICs are realized.
View Article and Find Full Text PDFNano Lett
December 2024
School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea.
The significance of antireflection has persisted over time due to its numerous optical applications. To achieve broadband antireflection, multiple element-based designs using graded-index films or multiresonant nanostructures have been conventionally employed. In this work, we propose an additional degree of freedom in developing antireflection by manipulating the orientation angles of nanostructures to achieve the symmetry-dependent Kerker condition.
View Article and Find Full Text PDFNano Lett
November 2024
School of Information Engineering, Nanchang University, Nanchang 330031, China.
Optical metasurfaces have revolutionized analog computing and image processing at subwavelength scales with faster speed and lower power consumption. They typically involve spatial differentiation with an engineered angular dispersion. Quasi-bound states in the continuum (quasi-BICs) have emerged as powerful tools for customizing optical resonances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!