Enhancer of Zeste homologue 2 (EZH2) overexpression is associated with tumor proliferation, metastasis, and poor prognosis. Targeting and inhibition of EZH2 is a potentially effective therapeutic strategy for head and neck squamous cell carcinoma (HNSCC). We analyzed EZH2 mRNA expression in a well-characterized dataset of 230 (110 original and 120 validation cohorts) human head and neck cancer samples. This study aimed to investigate the effects of inhibiting EZH2, either via RNA interference or via pharmacotherapy, on HNSCC growth. EZH2 upregulation was significantly correlated with recurrence ( < 0.001) and the methylation index of tumor suppressor genes ( < 0.05). DNMT3A was significantly upregulated upon EZH2 upregulation ( = 0.043). Univariate analysis revealed that EZH2 upregulation was associated with poor disease-free survival (log-rank test, < 0.001). In multivariate analysis, EZH2 upregulation was evaluated as a significant independent prognostic factor of disease-free survival (hazard ratio: 2.085, 95% confidence interval: 1.390⁻3.127; < 0.001). Cells treated with RNA interference and DZNep, an EZH2 inhibitor, showed the most dramatic changes in expression, accompanied with a reduction in the growth and survival of FaDu cells. These findings suggest that EZH2 upregulation is correlated with tumor aggressiveness and adverse patient outcomes in HNSCC. Evaluation of EZH2 expression might help predict the prognosis of HNSCC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320890PMC
http://dx.doi.org/10.3390/ijms19123707DOI Listing

Publication Analysis

Top Keywords

ezh2 upregulation
20
head neck
12
ezh2
12
neck cancer
8
ezh2 overexpression
8
rna interference
8
upregulation correlated
8
disease-free survival
8
upregulation
5
aberrant epigenetic
4

Similar Publications

Background: Mutations in the have been linked to the initiation and progression of breast cancer, as well as resistance to chemotherapy. Therefore, the development of novel treatment approaches is essential to combat this disease.

Objectives: This study aimed to evaluate the effects of dendrosomal curcumin (DNC) on the breast cancer cell line MDA-MB231.

View Article and Find Full Text PDF

The hematopoietic stem cell (HSC) continues their functional integrity and return to quiescence quickly even after inflammatory and other proliferative stress. The mechanism which is responsible for this highly regulatory process is not understood clearly. Previous results have shown that CD53 is noticeably upregulated in HSCs in response to a variety of stimuli.

View Article and Find Full Text PDF

N4-acetylcytidine (ac4C) is a critical RNA modification implicated in cancer progression. Currently, N-acetyltransferase 10 (NAT10) is recognized as the sole "writer" protein responsible for ac4C modification. However, the study of NAT10 and ac4C modification in lung cancer remains sparse.

View Article and Find Full Text PDF

Maternal obesity alters histone modifications mediated by the interaction between Ezh2 and Ampk, impairing neural differentiation in the developing embryonic brain cortex.

J Biol Chem

January 2025

Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE; ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, UAE. Electronic address:

Neurodevelopmental disorders have complex origins that manifest early during embryonic growth and are associated with intricate gene regulation dynamics. A perturbed metabolic environment such as hyperglycemia or dyslipidemia, particularly due to maternal obesity, poses a threat to the optimal development of the embryonic central nervous system. Accumulating evidence suggests that these metabolic irregularities during pregnancy may alter neurogenesis pathways, thereby predisposing the developing fetus to neurodevelopmental disorders.

View Article and Find Full Text PDF

Differentiation of antigen-activated B cells into pro-proliferative germinal center (GC) B cells depends on the activity of the transcription factors MYC and BCL6, and the epigenetic writers DOT1L and EZH2. GCB-like Diffuse Large B Cell Lymphomas (GCB-DLBCLs) arise from GCB cells and closely resemble their cell of origin. Given the dependency of GCB cells on DOT1L and EZH2, we investigated the role of these epigenetic regulators in GCB-DLBCLs and observed that GCB-DLBCLs synergistically depend on the combined activity of DOT1L and EZH2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!