Variation of the Bacterial Community in the Rhizoplane Iron Plaque of the Wetland Plant .

Int J Environ Res Public Health

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.

Published: November 2018

The survival of wetland plants in iron, sulfur and heavy metals-rich mine tailing ponds has been commonly attributed to the iron plaque (IP) on the root surface that acts as a protective barrier. However, the contribution of bacteria potentially regulates the iron-sulfur cycle and heavy metal exclusion at the root surface has not been studied in depth, particularly from a microbial ecology perspective. In this study, a pot experiment using , a typical wetland plant, in non-polluted soil (NP) and tailing soil (T) was conducted. Samples from four zones, comprising non-rhizosphere soil (NR), rhizosphere soil (R) and internal (I) and external (E) layers of iron plaque, were collected from the NP and T and analyzed by 16S rRNA sequencing. Simpson index of the genus level showed greater diversities of bacterial community in the NP and its I zone is the most important part of the rhizosphere. PICRUSt predicted that the I zones in both NP and T harbored most of the functional genes. Specifically, functional genes related to sulfur relay and metabolism occurred more in the I zone in the T, whereas those related to iron acquisition and carbon and nitrogen circulation occurred more in the I zone in the NP. Analysis of dominant bacterial communities at genus level showed highest abundance of heavy metal resistant genus in the E zones in both soils, indicating that heavy metal resistance of driven by mainly occurred at the external layer of IP. Moreover, many bacterial genera, such as , , , and involved in iron and sulfur metabolisms were found in the T and most showed higher abundance in the I zone than in the other zones. This work, as the first endeavor to separate the iron plaque into external and internal layers and investigate the variations of the bacterial communities therein, can provide an insight for further understanding the survival strategy of wetland plants, e.g., , in extreme environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6313532PMC
http://dx.doi.org/10.3390/ijerph15122610DOI Listing

Publication Analysis

Top Keywords

iron plaque
16
heavy metal
12
bacterial community
8
wetland plant
8
wetland plants
8
iron sulfur
8
root surface
8
genus level
8
functional genes
8
occurred zone
8

Similar Publications

The synergistic application of calcium (Ca) and magnesium (Mg) was investigated to mitigate cadmium (Cd) uptake and translocation in rice grown in Cd-contaminated soil. A pot experiment was conducted using different Ca:Mg molar ratios (Ca1:Mg2, Ca2:Mg1, and Ca1:Mg1) to evaluate their effect on Cd uptake. The results showed that the Ca1:Mg1 treatment achieved the highest reduction in grain Cd content (54.

View Article and Find Full Text PDF

Targeting Iron Responsive Elements (IREs) of APP mRNA into Novel Therapeutics to Control the Translation of Amyloid-β Precursor Protein in Alzheimer's Disease.

Pharmaceuticals (Basel)

December 2024

Department of Life Science, College of Science and General Studies, Alfaisal University, Riyadh 11533, Saudi Arabia.

The hallmark of Alzheimer's disease (AD) is the buildup of amyloid-β (Aβ), which is produced when the amyloid precursor protein (APP) misfolds and deposits as neurotoxic plaques in the brain. A functional iron responsive element (IRE) RNA stem loop is encoded by the APP 5'-UTR and may be a target for regulating the production of Alzheimer's amyloid precursor protein. Since modifying Aβ protein expression can give anti-amyloid efficacy and protective brain iron balance, targeted regulation of amyloid protein synthesis through modulation of 5'-UTR sequence function is a novel method for the prospective therapy of Alzheimer's disease.

View Article and Find Full Text PDF

Background: Preliminary research indicates that higher iron levels are associated with worse outcomes in patients with coronary artery disease.

Aims: The study aimed to investigate the relationship between iron levels and the type and composition of coronary plaques.

Methods: In patients with ≥1 coronary stenosis ≥50% on computed tomography angiography, iron levels, presence of high-risk plaque features, such as low-attenuation plaque (LAP), napkin-ring sign, positive remodeling, and spotty calcium, as well as type and plaque composition (calcified/fibrous/fibro-fatty/necrotic core) were evaluated.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a growing global health epidemic and is the leading cause of cardiovascular health problems, including ischemic stroke, coronary artery disease, and peripheral vascular disease. Despite extensive research on the underlying mechanisms of AS, iron remains an under-investigated mediator in the atherosclerotic process. Iron's involvement in AS is primarily linked to the iron-induced programmed cell death process known as ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!