Liquid crystals are defined as the fourth state of matter forming between solid and liquid states. Earlier the applications of liquid crystals were confined to electronic instruments, but recent research findings suggest multiple applications of liquid crystals in biology and medicine. Here, the purpose of this review article is to discuss the potential biological impacts of liquid crystals in the diagnosis and prognosis of cancer along with the risk assessment. In this review, we also discussed the recent advances of liquid crystals in cancer biomarker detection and treatment in multiple cell line models. Cases reviewed here will demonstrate that cancer diagnostics based on the multidisciplinary technology and intriguingly utilization of liquid crystals may become an alternative to regular cancer detection methodologies. Additionally, we discussed the formidable challenges and problems in applying liquid crystal technologies. Solving these problems will require great effort and the way forward is through the multidisciplinary collaboration of physicists, biologists, chemists, material-scientists, clinicians, and engineers. The triumphant outcome of these liquid crystals and their applications in cancer research would be convenient testing for the detection of cancer and may result in treating the cancer patients non-invasively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267481 | PMC |
http://dx.doi.org/10.3390/cancers10110462 | DOI Listing |
J Mol Graph Model
January 2025
Institute of Chemical Physics after A.B. Nalbandyan of NAS RA, 5/2 P. Sevak St., Yerevan, 0014, Armenia.
Liquid crystals (LC) are widely used in various optical devices due to their birefringence, dielectric anisotropy, and responsive behavior to external fields. Enhancing the properties of existing LCs through doping with nanoparticles, including semiconductor quantum dots, offers a promising route for improving their performance. Among various nanoparticles, QDs stand out for their high charge mobility, sensitivity in the near-infrared spectral region, and cost-effectiveness.
View Article and Find Full Text PDFNanoscale Horiz
January 2025
Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute and Huck Institute of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Molecular composites, such as bone and nacre, are everywhere in nature and play crucial roles, ranging from self-defense to carbon sequestration. Extensive research has been conducted on constructing inorganic layered materials at an atomic level inspired by natural composites. These layered materials exfoliated to 2D crystals are an emerging family of nanomaterials with extraordinary properties.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO 80309, USA.
The current intense study of ferroelectric nematic liquid crystals was initiated by the observation of the same ferroelectric nematic phase in two independently discovered organic, rod-shaped, mesogenic compounds, RM734 and DIO. We recently reported that the compound RM734 also exhibits a monotropic, low-temperature, apolar phase having reentrant isotropic symmetry (the I phase), the formation of which is facilitated to a remarkable degree by doping with small (below 1%) amounts of the ionic liquid BMIM-PF. Here we report similar phenomenology in DIO, showing that this reentrant isotropic behavior is not only a property of RM734 but is rather a more general, material-independent feature of ferroelectric nematic mesogens.
View Article and Find Full Text PDFChemphyschem
January 2025
Christ University, Centre for Advanced Research and Development, Hosur Road, Central Campus, 560029, India, 560029, Bengaluru, INDIA.
The utilization of liquid crystals (LC) as materials has enabled the enlargement of lenses with the potential to alter their focus. Tunable LC lenses with adjustable focus are essential for optical imaging, sensing, and detection devices. This technology offers many benefits, such as the ability to adjust focus, operate with low power, and be easily made.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112, United States.
Slip flow, a fluid flow enhanced in comparison to that calculated using continuum equations, has been reported for many nanopores, mostly those with hydrophobic surfaces. We investigated the flow of water, hexane, and methanol through hydrophilic nanopores in silica colloidal crystals. Three silica sphere sizes were used to prepare the crystals: 150 ± 30, 500 ± 40, and 1500 ± 100 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!