Urbanization usually pollutes the environment leading to alterations in key biogeochemical cycles. Therefore, understanding its effects on forest nitrogen (N) saturation is becoming increasingly important for addressing N pollution challenges in urban ecosystems. In this study, we compared soil (N availability, net N mineralization, net nitrification, and δN) and foliar (N concentrations and δN) variables in upstream, midstream and downstream forest stands of Bailongjiang River (BJR; more urbanized) and Wulongjiang River (WJR; less urbanized), the two branches of the Minjiang River Estuary. Total soil N, ammonium, nitrate, net N mineralization and nitrification rates, as well as soil δN were significantly higher in BJR compared with WJR forest stands. While no substantial difference in foliar N concentrations was noted between rivers, foliar δN was on average more than 2.5 times higher in BJR than WJR forest stands. Across the study area, foliar δN was positively related to soil δN, which also had positive linear relationships with soil nitrate concentrations, net N mineralization and net nitrification rates. Moreover, all variables except foliar δN and ammonium concentrations showed decreasing patterns in the order: upstream > midstream > downstream along the BJR forest stands. Soil ammonium and foliar values (N concentrations and δN) revealed clear patterns along the WJR, with the former increasing and the latter decreasing from the upstream to downstream forest stands. Our findings indicate an increase in urbanization-induced N inputs from the WJR to BJR and that forest stands along the BJR especially at the upstream have higher N availability and are shifting rapidly towards N saturation state. These results emphasize the need for effective N pollution control in urban environments through sustainable urban planning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2018.10.083 | DOI Listing |
Heliyon
January 2025
Escuela de Ingeniería Forestal, Instituto Tecnológico de Costa Rica, Apartado, 159-7050, Cartago, Costa Rica.
Physical properties were studied in commercial plantation of balsa established in Costa Rica. Among other variables studied, physical properties varied mainly for tree age, spacing, stand density, diameter, and height of trees, which we named dasometric conditions. The aim of this study was (i) to determine the variation of specific gravity (SG), air-dry density (AD), green density (GD), and green moisture content (GMC), (ii) to know the site effect and dasometric conditions on these properties, and (iii) to establish the relationship between the four physical properties.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Biological Sciences, Royal Holloway University of London, Egham, UK.
Assisted migration is a tree-planting method where tree species or populations are translocated with the aim of establishing more climate-resilient forests. However, this might potentially increase the susceptibility of translocated trees to herbivory. Stand diversification through planting trees in species or genotypic mixtures may reduce the amount of damage by insect pests, but its effectiveness in mitigation of excess herbivory on climate-matched trees has seldom been explored.
View Article and Find Full Text PDFFire Ecol
January 2025
Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA USA.
Background: Prescribed fires play a critical role in reducing the intensity and severity of future wildfires by systematically and widely consuming accumulated vegetation fuel. While the current probability of prescribed fire escape in the United States stands very low, their consequential impact, particularly the large wildfires they cause, raises substantial concerns. The most direct way of understanding this trade-off between wildfire risk reduction and prescribed fire escapes is to explore patterns in the historical prescribed fire records.
View Article and Find Full Text PDFGait Posture
January 2025
Department of Industrial Engineering and Management, Yuan Ze University, 135 Yuan Tung Road, Chungli District, Taoyuan, Taiwan. Electronic address:
Background: The use of inertial measurement units (IMUs) in assessing fall risk is often limited by subject discomfort and challenges in data interpretation. Additionally, there is a scarcity of research on attitude estimation features. To address these issues, we explored novel features and representation methods in the context of sit-to-stand transitions.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
As sustainable forest management gains increasing attention, comprehending the impact of stand density on soil properties and microbial communities is crucial for optimizing forest ecosystem functions. This study employed high-throughput sequencing in conjunction with soil physicochemical analysis to assess the effects of stand density on soil physicochemical properties and microbial community characteristics in Chinese fir plantations, aiming to elucidate the influence of density regulation on ecosystem services. Our results suggested that changes in soil physicochemical properties and microenvironmental conditions were key drivers of soil microbial diversity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!