One-dimensional (1D) titanate nanostructures were synthesized by hydrothermal route, using commercially available TiO₂ (P25) and anatase powders as precursor materials and strong NaOH solution as catalyzer. The prepared titanates were calcined, followed by protonation to produce TiO₂ nanostructures having enhanced photocatalytic and photovoltaic properties. The synthesized TiO₂ 1D nanostructures were characterized using field-emission scanning electron microscope, high-resolution electron microscope, X-ray diffraction analysis, and UV-Vis photospectroscopy to understand the effect of initial TiO₂ phase on morphological and crystallographic features, and bandgap. Methylene blue degradation test was applied to evaluate the photoactivity of the products obtained after different stages of the process. The findings indicate that 1D TiO₂ nanostructures form by different mechanisms from dissolved aggregates during hydrothermal process, depending on the crystal structure of the initial precursor used. Photocatalytic test results reveal that protonated titanates have considerable adsorption capability, while photocatalytic degradation depends on TiO₂ transformation.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2019.16171DOI Listing

Publication Analysis

Top Keywords

tio₂ nanostructures
16
tio₂
8
initial tio₂
8
tio₂ phase
8
electron microscope
8
nanostructures
5
alkaline hydrothermal
4
hydrothermal synthesis
4
synthesis characterization
4
photocatalytic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!