One-dimensional (1D) titanate nanostructures were synthesized by hydrothermal route, using commercially available TiO₂ (P25) and anatase powders as precursor materials and strong NaOH solution as catalyzer. The prepared titanates were calcined, followed by protonation to produce TiO₂ nanostructures having enhanced photocatalytic and photovoltaic properties. The synthesized TiO₂ 1D nanostructures were characterized using field-emission scanning electron microscope, high-resolution electron microscope, X-ray diffraction analysis, and UV-Vis photospectroscopy to understand the effect of initial TiO₂ phase on morphological and crystallographic features, and bandgap. Methylene blue degradation test was applied to evaluate the photoactivity of the products obtained after different stages of the process. The findings indicate that 1D TiO₂ nanostructures form by different mechanisms from dissolved aggregates during hydrothermal process, depending on the crystal structure of the initial precursor used. Photocatalytic test results reveal that protonated titanates have considerable adsorption capability, while photocatalytic degradation depends on TiO₂ transformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2019.16171 | DOI Listing |
Mikrochim Acta
January 2025
Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, Guangdong, China.
Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Federal University of Paraná, Curitiba, 81531-980, Brazil.
Gold-based (Au) nanostructures are efficient catalysts for CO oxidation, hydrogen evolution (HER), and oxygen evolution (OER) reactions, but stabilizing them on graphene (Gr) is challenging due to weak affinity from delocalized [Formula: see text] carbon orbitals. This study investigates forming metal alloys to enhance stability and catalytic performance of Au-based nanocatalysts. Using ab initio density functional theory, we characterize [Formula: see text] sub-nanoclusters (M = Ni, Pd, Pt, Cu, and Ag) with atomicities [Formula: see text], both in gas-phase and supported on Gr.
View Article and Find Full Text PDFNat Commun
January 2025
Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA.
Amidst the rising prevalence of respiratory diseases, the importance of effective lung treatment modalities is more critical than ever. However, current drug delivery systems face significant limitations that impede their efficacy and therapeutic outcome. Biohybrid microrobots have shown considerable promise for active in vivo drug delivery, especially for pulmonary applications via intratracheal routes.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.
Te-free thermoelectrics have garnered significant interest due to their immense thermoelectric potential and low cost. However, most Te-free thermoelectrics have relatively low performance because of the strong electrical and thermal transport conflicts and unsatisfactory compatibility of interfaces between device materials. Here, we develop lattice defect engineering through Cu doping to realize a record-high figure of merit of ~1.
View Article and Find Full Text PDFChembiochem
January 2025
National Center for Nanoscience and Technology, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, No.11 BeiYiTiao, ZhongGuanCun, 100190, Beijing, CHINA.
Nucleic acid, as a carrier of genetic information, has been widely employed as a building block for the construction of versatile nanostructures with pre-designed sizes and shapes through complementary base pairing. With excellent programmability, addressability, and biocompatibility, nucleic acid nanostructures are extensively applied in biomedical researches, such as bio-imaging, bio-sensing, and drug delivery. Notably, the original gene-encoding capability of the nucleic acids themselves has been utilized in these structurally well-defined nanostructures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!