Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Silica aerogels possess low thermal conductivity but have a brittle nature, while their polymers tend to exhibit enhanced mechanical properties. In this study, we introduce a new approach to overcoming this brittle property of silica aerogels. Polypropylene/silica aerogel composites were prepared by thermally induced phase separation followed by a supercritical CO₂ drying method. Silica aerogel was formed onto a polypropylene scaffold using a two-step sol-gel process with methyltrimethoxysilane as the silica precursor. Enhancement of the mechanical properties of the polypropylene/silica aerogel composite compared with a pristine methyltrimethoxysilane-based silica aerogel was observed. The effects of the latter on the microstructure and physical properties of the polypropylene/silica aerogel (hereafter referred to as the polymer matrix aerogel) composite were investigated. Compared with the polypropylene monolith, the polymer matrix aerogel composite demonstrated enhanced surface-chemical and microporous-structural properties such as higher hydrophobicity (135°), pore volume (0.18 cm³/g), average pore diameter (12.55 nm), and specific surface area (57.2 m²/g). This novel approach of incorporating methyltrimethoxysilane-based silica aerogel onto polypropylene when synthesizing the polymer matrix aerogel composite shows great potential as a durable superhydrophobic and corrosion resistant thermal insulating material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2019.16257 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!