Spontaneous water adsorption-desorption oscillations in mesoporous thin films.

J Colloid Interface Sci

INTEC (Universidad Nacional del Litoral-CONICET), Predio CCT CONICET Santa Fe, RN 168, 3000 Santa Fe, Argentina. Electronic address:

Published: March 2019

Understanding fluid transport and phase changes in nanopore structures is of great interest to many application fields, from energy conversion to water harvesting. This work discusses the spontaneous oscillations of the water saturation of mesoporous thin films, in the zone adjacent to a sessile water drop, at ambient conditions. The wetting-front dynamics onto the film is described by considering three coexisting phenomena: infiltration from the water drop, condensation from air vapor, and evaporation to the ambient. It was found that the oscillations follow spontaneous condensation-evaporation imbalances, which are governed by the hysteretic character of the adsorption-desorption behavior of the mesoporous material. The outcomes of this work provide insights on the complex interplay between water and nanopore structures, which has practical implications for the handling of humid microenvironments in lab-on-a-chip technology, as well as for many processes that take part of the cycle of water in nature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2018.11.055DOI Listing

Publication Analysis

Top Keywords

mesoporous thin
8
thin films
8
nanopore structures
8
water drop
8
water
6
spontaneous water
4
water adsorption-desorption
4
adsorption-desorption oscillations
4
oscillations mesoporous
4
films understanding
4

Similar Publications

Mesoporous Fe2O3-TiO2 Integrated with Plasmonic Ag Nanoparticles for Enhanced Solar H2 Production.

Chem Asian J

January 2025

CSIR-National Chemical Laboratory: CSIR National Chemical Laboratory, Catalysis and Inorganic Chemistry Division, Dr. Homi Bhabha Road, 411 008, Pune, INDIA.

Present work describes a sol-gel assisted one-pot synthesis of mesoporous Fe₂O₃-TiO₂ nanocomposites (TiFe) with different Ti:Fe ratios, and fabrication of Ag-integrated with TiFe nanocomposites (TiFeAg) by a chemical reduction method and demonstrated for high solar H2 generation activity in direct sunlight. Enhanced solar H2 production is attributed to the light absorption from entire UV+Visible region of solar spectrum combined with Schottky (Ag-semiconductor) and heterojunctions (TiO2-Fe2O3), as evidenced from HRTEM and various characterization studies.  TiFeAg-2 thin film (1 wt% Ag-loaded TiFe-4) displayed the highest activity with a solar H2 yield of 7.

View Article and Find Full Text PDF

TiO has broad prospects in reducing the safety risks posed by emerging pollutants in water environments. However, the high recombination rate of photogenerated carriers limits the activity and photon utilization efficiency of TiO. In this study, mesoporous TiO (m-TiO) and ultra-thin g-CN nanosheets were composited using a hydrothermal method, with the m-TiO tightly and uniformly wrapped by g-CN.

View Article and Find Full Text PDF

The resistivity of the silica SBA-15 type can be significantly improved by forming a thin layer of carbon on the pore surface. This is possible through the carbonization reaction of a surfactant used as a structure-directing agent in the synthesis of mesostructured silica materials. The synthesis of this type of silica-carbon composite (SBA-C) is based on the use of sulfuric acid to create a carbon layer from surfactant molecules encapsulated in silica mesopores.

View Article and Find Full Text PDF

Stress-induced self-assembly of hierarchically twisted stripe arrays.

Sci Bull (Beijing)

December 2024

Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China. Electronic address:

Hierarchical organization is prevalent in nature, yet the artificial construction of hierarchical materials featuring asymmetric structures remains a big challenge. Herein, we report a stress-induced self-assembly strategy for the synthesis of hierarchically twisted stripe arrays (HTSAs) with mesoporous structures. A soft and thin mesostructured film assembled by micelles and TiO oligomers is the prerequisite.

View Article and Find Full Text PDF

This study introduces the synthesis and characterization of advanced silica core-shell nanostructures, with an emphasis on the innovative Si-ACS (Silica Acorn Core-Shell) design and its modified counterparts. Employing the classic Stöber method, SiCore particles were first produced, followed by the creation of the acorn-like Si-ACS structures. A key aspect of this research is the exploration of the effects of CTAB and TEOS concentrations on the morphology and properties of the silica shells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!